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Abstract: In this paper, we investigate the issue of convergence in  
multi-objective optimisation problems developed for vehicle analyses when 
using a Multi-Objective Genetic Algorithm (MOGA) to determine the set of 
Pareto optimal automobile configurations. Additionally, given a Pareto set for a 
multi-objective problem, the mapping between the performance and design 
space is studied to determine new automobile design configurations for a  
given set of performance specifications. The advantage of this study is that  
the automobile’s design information is obtained without having to repeat 
system analyses. The tools developed in this paper are applied both to a simple 
multi-objective optimisation problem to illustrate the methodology and to  
a preliminary vehicle design framework to develop a Technical Feasibility 
Model (TFM) for use in the early stages of automobile design. 
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1 Introduction 

The goal of creating a Technical Feasibility Model (TFM) is to provide for rapid 
assessments of design feasibility in the preliminary stages of the design process. 
Feasibility in this tool is assessed by investigating whether or not product specifications 
are mutually compatible from an engineering design perspective. This paper covers two 
issues critical to successful deployment of a TFM. The first issue is the convergence of 
the multi-objective optimisation problem when using a Multi-Objective Genetic 
Algorithm (MOGA) to generate a set of Pareto optimal solutions upon which the TFM is 
based. From a business perspective, it is critical to understand the convergence behaviour 
of the MOGA a priori so that adequate resources can be allocated to development of the 
TFM. The second issue is the nature of the correspondence between the Pareto-optimal 
solutions in the performance space and the corresponding variables and configurations in 
the design space. A point located in the performance space may map to many points in 
the design space. That is, the same performance may be obtained by multiple design 
configurations. Knowledge of this correspondence may be used to understand how slight 
changes in the performance space may change the configuration and values in the design 
space. It also lends insight into the robustness of solutions by providing the designer with 
several viable design alternatives for achieving a desired performance. 
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The study of convergence criteria is critical for computationally expensive problems 
because evaluation time could seriously inhibit the success of the preliminary design 
process. Mapping from the performance to design space is critical to understanding how 
changes in product specifications affect the design configuration. This paper presents 
both the TFM development procedures in Gurnani et al. (2005) and a discussion  
of the TFM development results. Section 2 provides background information into  
multi-objective optimisation, convergence of MOGAs, and the issues pertaining to the 
mapping of performance space to design space. 

2 Background 

It has long been accepted in the engineering design community that product design  
can no longer be viewed with the perspective of reducing cost alone. Increased  
demands by consumers on products and processes, as well as fierce competition  
amongst manufacturers, have pushed the concept of multi-objective optimisation as the 
methodology to be used for the design of new products. The challenge now is to design  
a product with low cost, but at the same time satisfying other consumer demands, such  
as a need for increased luxury and comfort in the use of the product. Designers also  
seek to provide ‘surprise and delight’ attributes to get an edge over competitors. Laws 
related to safety and quality of products further increase the number of objectives  
that need to be simultaneously satisfied in the design of modern day products. Thus, 
multi-objective optimisation, which provides essential tools in achieving many goals 
simultaneously as discussed in Eschenauer et al. (1990), is an important area of research 
and the primary focus of this paper. 

Multi-objective problems rarely have a single solution and usually have a set of 
multiple points forming the solution set. These solutions, called Pareto-optimal solutions 
are those in which any improvement in one objective must result in the degradation of at 
least one other objective since the objectives conflict with each other. The theory behind 
Pareto optimality is introduced in Pareto (1906). Mathematically, a feasible design 
variable vector, x′ is Pareto optimal, if and only if there is no feasible design variable 
vector, x , with the characteristics shown in equation (1) 

( ) ( ) for all , 1, ,
( ) ( ) for at-least one , 1, ,

i i

i i

f x f x i i n
f x f x i i n

′≤ =
′< =

…
…

 (1) 

in which n is the number of objectives and the use of the ‘less than’ symbol indicates  
an improvement in a criteria (minimisation of objectives). 

With the increase in availability of computational resources, heuristic optimisation 
methods, such as genetic algorithms that are computationally intensive, have been 
extended for the use of multi-objective problems. The advantage of using a Genetic 
Algorithm for multi-objective problems, called a MOGA, is that the final result is a set of 
multiple solutions that do not dominate each other. If the MOGA is run long enough, the 
solution set obtained can be approximated to be the Pareto set as shown in Eddy and 
Lewis (2001). Knowledge of designs that make up the Pareto set is invaluable since these 
designs are the best solutions to the multi-objective problem. 
 
 



   

 

   

   
 

   

   

 

   

    A study of convergence and mapping in preliminary vehicle design 195    
 

    
 
 

   

   
 

   

   

 

   

       
 

The research presented in this paper has been conducted to aid in the preliminary 
phases of the vehicle development process. The proposed framework for this system  
is computationally intensive and incorporates evaluations in different software packages. 
Details of this framework have been published in Fenyes et al. (2002), as well as in  
Gu and Fenyes (2004). Since each evaluation of the objective functions is extremely 
expensive in terms of computation time, issues pertaining to the convergence of the 
MOGA to the Pareto set become very important. Some of these issues are related to  
the accuracy of the Pareto frontier, the spread of Pareto points and the existence of 
clusters since all these parameters depend on the convergence of the MOGA. Wu and 
Azarm (2001) have developed various metrics that enable the designer to either monitor 
the quality of the Pareto frontier, or use it to compare the solution obtained from different 
multi-objective optimisation methods. Deb and Jain (2002) have proposed a metric  
that evaluates the convergence of a solution set to a reference set, while van Veldhuizen 
(1999) proposes an error ratio to determine if a solution set has converged to the true 
solution set. In this paper, a study that compares non-dominated solution sets, obtained by 
using a smaller number of function evaluations, to the true Pareto set, is presented. This is 
critical because each function evaluation is computationally expensive. 

In addition to reducing the number of function evaluations to obtain the Pareto set, 
vehicle development teams also require knowledge of the relationships between vehicle 
attributes and vehicle design parameters. The desired attributes or objective function 
values (also referred to as performance measures) for the new vehicle design are 
available a priori from marketing, as these attributes are developed to maximise customer 
satisfaction. To provide the design variable information corresponding to the desired 
performance measures, vehicle development engineers would need to work backwards 
within their analysis systems, which is already known to be computationally intensive.  
To avoid these additional analyses, up-front mapping of design variable values to the 
existing set of Pareto points could be used to determine the design configuration of  
the new vehicle. 

Mapping of the performance space to the design space is not new to engineering 
design and has been recognised as a challenging task because the mapping can be  
one-to-many, with one objective function point mapping back to multiple design points 
as shown by Kasprzak and Lewis (2001). Past work includes the use of a visualisation 
technique called Cloud Visualisation to determine design variable values for a given 
point in the performance space. This work has been presented by Eddy and Lewis (2002). 
The use of design variable mapping has also been shown by Lee and Black (2004) to 
accelerate the design process for a multi-piece propshaft. Additionally, Ferguson and 
Lewis (2004) discuss the criticality of mapping between performance and design spaces 
in morphing systems where changing from one optimal configuration to another can 
potentially create drastic changes in the design configuration. In this work, data obtained 
from the MOGA for Pareto set generation is used to determine the design variable values 
of the new design using a mapping between the performance and design spaces. 

Given the background to the work presented in this paper, Section 3 discusses  
in detail the MOGA convergence studies mentioned earlier in this section. Section 4 
presents the theory used for the performance to design space mapping. Section 5 presents 
an application of the work in this research to a simple case study problem and Section 6 
provides some concluding remarks and areas of future work. 
 



   

 

   

   
 

   

   

 

   

   196 S. Ferguson, A. Gurnani, J. Donndelinger and K. Lewis    
 

    
 
 

   

   
 

   

   

 

   

       
 

3 MOGA convergence 

The first step of constructing a Technical Feasibility Model relies upon the usage of a 
MOGA to solve a multi-objective optimisation problem. The solution to this problem is a 
set of non-dominated solutions that compose the Pareto frontier. Metamodeling 
techniques are then used to fit a constrained second order polynomial to these Pareto 
points. This surface is used to assess technical feasibility as well as the optimality of a 
given test point. To ensure that the entire frontier is populated, an exhaustive number of 
evaluations are used. For the purposes of this paper, the MOGA process used to create 
the Pareto frontier is referred to as the ‘exhaustive’ MOGA. The solution of this 
exhaustive MOGA serves as the Pareto frontier benchmark while comparing  
different Pareto frontier solutions. However, such a large number of evaluations for a 
multi-objective system may result in extreme computational expense. Therefore, for such 
complex systems, completing such a large number of functional evaluations may not be 
practical, or even feasible. 

The large number of evaluations used in the exhaustive MOGA raises a significant 
research question. This question addresses the extent to which the quality of the frontier 
is affected when changing the maximum allowed number of evaluations. By investigating 
the convergence of the MOGA, it may be possible to determine a trade-off between the 
number of designs evaluated and the quality of the Pareto frontier. In order to determine 
this trade-off, a convergence study is presented in Section 3.1. Section 3.2 then applies 
the convergence study to a test problem and presents the results for that problem. 

3.1 Convergence of a multi-objective problem Pareto set 

Understanding this trade-off will enable the effective evaluation of problems of increased 
computational complexity. First, however, it is necessary to determine a method of 
comparing the results of different MOGA test cases. This method is described in the 
following steps: 

• Complete an exhaustive sampling of the model. As mentioned earlier, this results in a 
set of objective function values that are assumed to be the true Pareto set. 

• Specify indifference thresholds. These are intervals for each objective within which 
the designer is indifferent to all objective values. Each interval is based on the 
designer’s preferences over a design objective and is a function of his or her 
experience and knowledge of the problem. It is assumed that the designer has 
sufficient information to state preferences over the objectives and to specify the 
indifference thresholds. As an example, in vehicle design, a design engineer may 
decide that the difference between 30.0 mpg and 30.2 mpg is not critical and, 
therefore, these two ratings could be viewed as being equivalent. 

• Discretise the performance space using the defined thresholds. Using the 
indifference thresholds to establish the discretisation sizes for each objective, the 
performance space is divided into a collection of ‘hyperboxes’ (for problems with 
more than three objectives). For a problem with three objectives, the performance 
space would be discretised into a set of equally sized rectangular cuboids, where the 
cuboid dimensions are the indifference threshold values for each objective. 
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• Represent the exhaustive MOGA as a collection of hyperboxes in the performance 
space. Using the discretised performance space, it is possible to visualise the 
resultant view of the Pareto frontier as seen in Figure 1. To determine if a hyperbox 
in the performance space is part of the Pareto frontier, at least one non-dominated 
design must be present in a given hyperbox. If there exist multiple design points in 
the same hyperbox, the design engineer is said to be indifferent to all these designs. 
Pictorially, this scenario is shown in Figure 2. For the problem shown in Figure 1, 
the hyperboxes populated by the Pareto points (determined using the MOGA) are 
shown in Figure 3. 

• Compare the results of other MOGA runs to the hyperbox solution set of the 
exhaustive study. MOGA cases using different number of function evaluations are 
investigated and compared to the exhaustive Pareto frontier. These cases are 
developed to analyse the trade-off of maximum allowed evaluations to the quality  
of the Pareto frontier. The number of function evaluations available is treated as a 
constraint in the set-up of the MOGA. 

Figure 1 Representing the pareto frontier as a collection of hyperboxes 

 

Figure 2  Identification of indifferent designs within a performance space hyperbox 

 

Figure 3  Identification of hyperboxes filled in the performance space by the pareto frontier 
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In order to effectively generate the best final population, an algorithm for implementing 
the MOGA when using the maximum number of available evaluations is developed.  
The first stage starts with a small initial population, and maintains a constant population 
size for a limited number of evaluations (e.g., a third of the available evaluations).  
This stage is designed to drive the members of the population to the Pareto frontier. 
However, by doing so, it is not guaranteed that the points of the population are evenly 
distributed along the frontier. To remedy this, the second stage allows the population of 
the MOGA to grow to accommodate all identified non-dominated designs for the 
remaining number of design evaluations. Graphically, this is shown in Figure 4. 

Figure 4  Depiction of MOGA for 500 evaluation test case 

 

As with the exhaustive MOGA, the filled hyperboxes in the performance space for  
each MOGA population are identified. Comparing these hyperboxes, the number of 
hyperboxes that are filled by both the exhaustive MOGA and each test case is recorded. 
As the number of design evaluations increases, so does the number of exhaustive MOGA 
hyperboxes filled by the test case. Therefore, a complete frontier that is captured with  
a smaller number of evaluations than the exhaustive MOGA is inherently more effective. 

In order to present the complete details of the technical background and to be able  
to visually represent the results, a simple three objective problem, with two design 
variables and no constraints, is selected as a working example problem. Though this 
problem is simplistic in nature, it exhibits the necessary properties of problems for which 
the technology in this paper has been developed. A convergence study of this problem is 
completed in the next section. 

3.2 Convergence study for working example problem 

The multi-objective problem used in this working example is stated in equation (2) 
below. 

2 2
1

2 2
2

2 2
3

Minimise :
( 1)
( 1)

( 1) 2.
Subject to :

2 , 2.

f x y
f x y
f x y

x y

= + −

= + +

= − + +

− ≤ ≤

 (2) 
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The design space, defined by the design variables, is divided into equally spaced squares. 
The side of each square has a length of 0.1 units. The bounds for the objective function 
values are determined from the MOGA results. These bounds are shown in Table 1. 

Table 1 Upper and lower bounds on objective functions for the working example problem 

 F1 F2 F3 

Lower bound 0.0041 1.0006 2.0000 
Upper bound 4.0243 5.1950 4.0794 

The generation of the Pareto frontier is completed using 10000 unique design 
evaluations. This number is selected since a high fidelity surface for gap analysis  
and surface fitting is required. For this simple problem, this analysis could be completed 
without much computational expense. However, for more complex problems, this may  
be infeasible due to time and/or computational constraints. Using this frontier as our 
exhaustive sampling of the problem, 6,829 non-dominated designs are found. Next, a 
discretisation size of 0.2 units is selected for all objectives. Using this discretisation size, 
the 6,829 unique non-dominated designs are placed into 252 unique hyperboxes in the 
performance space. Figure 5 shows a plot of the performance space, where each dot 
represents the centroid of a filled hyperbox of the Pareto frontier. 

Figure 5  Index representation of the pareto frontier 

 

The 252 identified hyperboxes represent the target goal of any MOGA that is run on this 
problem. Obviously, as the discretisation size changes, so will the number of hyperboxes 
filled by points from the Pareto frontier. The next step is to determine how well MOGA 
solutions developed using fewer evaluations can accurately capture the behaviour of the 
frontier. 

To start the convergence study, 150 evaluations are first completed to move the  
initial designs to the boundary of the Pareto surface. These points are evaluated by 
creating a random unique population of size 20, and maintaining a constant population 
across as many generations needed to reach 150 evaluations. For this case, 146  
non-dominated designs are found and are placed into hyperboxes in the performance 
space. These designs map to 62 unique hyperboxes in the performance space. Comparing 
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these 62 hyperboxes to the 252 that comprise the Pareto frontier, 52 of the hyperboxes  
are located on the frontier. Plotting the indices of these hyperboxes in the performance 
space, Figure 6 shows the representation of the frontier after 150 evaluations. 

Though the surface in Figure 6 is sparsely populated, the hyperboxes that have  
been identified are scattered across the entire span of the frontier. This data is now used 
as the starting point for the second phase of the convergence study. Using these designs 
as the initial population, new instances of the MOGA are created that have a different 
number of total evaluations as stopping criteria. For this study, five different cases are 
investigated. These MOGAs are designed to terminate after 500, 1000, 2000, 5000,  
and 7500 total evaluations. After the maximum number of allowed evaluations has  
been reached, the non-dominated points are placed into the appropriate hyperboxes. 
These hyperboxes are then compared to the exhaustive MOGA. Those hyperboxes that 
have the same index are recorded and are considered to represent the true Pareto frontier. 
The results of this analysis for the case study problem are shown in Figure 7. 

Figure 6  Index representation of the frontier after 150 evaluations 

 

Figure 7  Number of hyperboxes filled as evaluations increase 
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The data in Figure 7 presents important information regarding the convergence of the 
MOGA. Completing only the first 150 evaluations – and creating the initial population 
used for the result of the studies – nearly 21% of the 252 hyperboxes comprising the 
Pareto frontier has been captured. At 500 total evaluations, nearly half of the hyperboxes 
that compose the Pareto frontier are filled by at least one design. Nearly 82% of the 
frontier has been captured by 2,000 evaluations, and increasing the number of evaluations 
by another 250% only yields an extra 9% of the entire surface. By 7,500 evaluations, 
roughly 93% of the Pareto frontier has been identified. Figure 8 demonstrates how  
the entire frontier of this problem is gradually accounted for as the number of evaluations 
increases. 

Figure 8  Index representation of the frontier at different evaluation limits 

 

These results show that a large number of evaluations can potentially be saved while still 
capturing the behaviour of the frontier. However, this problem only contains three 
objective functions comprised of two design variables, and no constraints. For a more 
challenging problem, such a large portion of the Pareto frontier might not be captured in a 
small number of evaluations. Additional objectives, design variables, and constraints, 
make developing the solution computationally more expensive. Therefore, it may be 
necessary to modify the definition by which an exhaustive MOGA hyperbox can be 
considered to be captured. 
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One of the most powerful aspects that these results do not take into consideration is 
the hyperboxes that are adjacent to the exhaustive MOGA hyperboxes. Using different 
adjacency constraints, it becomes possible to provide more information about how well 
the different numbers of evaluation cases capture the behaviour of the exhaustive MOGA 
frontier. 

As the performance space for this system is three-dimensional, adjacency can occur 
in more than the standard two-dimensional space. Two objects can be considered 
adjacent so long as the absolute difference in any given dimension is no greater than one. 
Using this rule, Figure 9 shows the first four levels of adjacency possible in an  
n-dimensional space. The first level of adjacency is when all indices of the two 
hyperboxes being compared are the same in all dimensions. When the two hyperboxes 
compared are the same in all but 1 dimension, the two hyperboxes that are adjacent share 
a common plane, or face. When the indices comparison holds for all but 2 dimensions, 
the two compared hyperboxes share a common edge. Finally, when the indices of the 
hyperboxes are the same in all but 3 dimensions, the two compared hyperboxes share 
only a common point. 

Figure 9  Levels of adjacency 

 

This concept can be expanded into n-dimensional space and used as a guideline for 
considering how much flexibility in adjacency an engineer is willing to allow. Note  
that each of the uniform hyperboxes in the discretised performance space (from the 
indifference thresholds) has been assigned an index. Adjacency is specified in terms  
of these indices. For example, for a five objective problem a hyperbox with index set  
(0,1,1,1,1) is adjacent to a hyperbox with index set (0,1,1,1,2) in all but one dimension. 
The same hyperbox (0,1,1,1,1) is adjacent to a hyperbox with index set  
(1,1,1,1,2) in all but two dimensions and so on. Generalising this idea, consider  
the performance space of an n- objective problem with two hyperboxes having indices 
(x1, x2, …, xn) and (y1, y2, …, yn). The number of dimensions that the two hyperboxes are 
adjacent in is given as (n – L) where L is defined in equation (3) 

1

iff 1 for 1, .

n

i i
i

i i

L x y

x y i n
=

= −

− ≤ =

∑  (3) 
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Applying the different adjacency constraints to the analysis allows for an exhaustive 
MOGA performance space hyperbox to be considered captured as long as a hyperbox 
from a MOGA test case is adjacent. As the performance space for the problem 
investigated here is only three-dimensional, the first four levels of adjacency are the only 
applicable cases. The data for this analysis is presented in Figure 10. 

From Figure 10, it can be seen that for the larger evaluation cases, implementing  
any level of adjacency corresponds to all 252 hyperboxes of the Pareto frontier being 
captured. For the 500 and 1,000 evaluation cases, allowing for one level of adjacency 
results in a 200% and 150% increase, respectively, in captured frontier hyperboxes. 
Allowing for two levels of adjacency, both the 500 and 1,000 evaluation cases  
fully capture the behaviour of the Pareto frontier. Allowing any level of adjacency 
significantly increases even the 150 evaluation cases, demonstrating the degree to which 
the solutions for that MOGA run are scattered over the frontier. 

Figure 10 Convergence data 

 

Viewing the performance space as a series of hyperboxes allows for the possible 
reduction in total evaluations needed by a MOGA to effectively capture the behaviour  
of the Pareto frontier. While a hyperbox may be filled when using a smaller number of 
evaluations, the number of designs located in each hyperbox will be less than seen in the 
exhaustive MOGA. However, such an advantage plays a significant role in a larger, more 
complex problem. To further decrease the needed number of evaluations, incorporating 
different levels of adjacency provides the ability to capture a greater percentage of the 
frontier. As demonstrated in this problem, 2,000 evaluations with an analysis of one level 
of adjacency are nearly as effective in capturing the behaviour of the Pareto frontier as 
the exhaustive MOGA case of 10,000 evaluations. This type of large-scale reduction in 
the number of evaluations required to represent the Pareto frontier would likely prove 
invaluable as computational time and expense for system analyses increases. 

The ability to determine the true Pareto frontier of a problem allows for the 
generation of a TFM. However, the feasibility of a test point and its optimality with 
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respect to the Pareto frontier is only a portion of the information needed in the 
preliminary design process. Mapping a set of technical specifications to their location in 
the design space provides invaluable insight into how the system behaves, and how it will 
react to change. Mapping from the performance to design space is not one-to-one, 
however, and becomes a non-trivial task. An approach to address this issue is outlined in 
the next section. 

4 Performance to design space mapping 

Development of the Pareto frontier representation allows the designer to determine if a 
new preliminary design concept is feasible and optimal with respect to the selected 
performance measures. However, this information is incomplete, as it provides no 
knowledge of the design variables that compose that design. Understanding the 
relationship between the performance and the design space is the next logical progression 
in developing a preliminary design within the TFM. This may be accomplished  
by determining the corresponding design variable information given a desired set of 
performance values for a multi-objective problem. Design variable information is desired 
in the form of a mean value and a design tolerance to allow for robust design. Section 4.1 
discusses how design variable information can be obtained by mapping the performance 
space to the design space. The results of the mapping study as performed on the test 
problem are presented in Section 4.2. 

4.1 Performance to design space mapping 

For the purpose of developing a map between the performance and design spaces, 
indifference thresholds that have been defined earlier are used for the performance space. 
Using the indifference thresholds to establish the discretisation sizes for each objective, 
the performance space is divided into a collection of hyperboxes, as discussed earlier, for 
the convergence study. Each performance space hyperbox maps to some region of  
the design space that is also discretised into hyperboxes. 

In order to determine the corresponding design variable configuration for a given  
set of performance measure values, the hyperbox corresponding to the performance 
values is identified and mapped back to a design space hyperbox. The centroid of this 
mapped hyperbox is the design that would be used to obtain the desired performance 
measures, with the design tolerance range determined from the span of the hyperbox.  
The nature of mapping between performance space and design space hyperboxes can be 
of three types as discussed below. 

• Type 1. Individual performance space hyperbox maps to one design space hyperbox. 
In this case, the centroid of the design space hyperbox is the design variable vector 
and the tolerance is half the discretisation range. This is shown in Figure 11. 

• Type 2. Performance space hyperbox maps to multiple, adjacent design space 
hyperboxes. In this case, a larger hyperbox can encompass all the mapped adjacent 
hyperboxes. The design variable values correspond to the centroid of this overlaying 
box with the tolerance values determined from the extremes of  
the enveloping hyperbox. This is shown in Figure 12. 
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• Type 3. Performance space hyperbox maps to multiple, non-adjacent design space 
hyperboxes. As shown in Figure 13, one performance space hyperbox maps to 
different design space hyperboxes that are spaced out in the design space.  
It is hypothesised that it is meaningful to place an overlaying hyperbox over the 
scattered mapped design space hyperboxes. To validate this hypothesis, the 
following study is carried out. 

Figure 11 One performance space hyperbox mapped to one design space hyperbox 

 

Figure 12 One performance space hyperbox mapped to multiple adjacent design space hyperboxes 

 

Figure 13 One performance space hyperbox mapped to multiple, non-adjacent design space 
hyperboxes 

 

For a set of non-adjacent, mapped design space hyperboxes, a larger hyperbox is defined 
to envelope these hyperboxes. Three design points are selected from this hyperbox and 
evaluated to determine their objective function values. If the evaluated objective function 
values fall into the same performance space hyperbox from where the design space 
hyperboxes are originally mapped, the hypothesis is considered valid. The three points 
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selected are the centre of the box, a point corresponding to a quarter of the way  
in all dimensions of the hyperbox, and a point corresponding to three quarters of the way 
in all dimensions of the hyperbox. The 2-D representation is shown in Figure 14. 

Figure 14 Determining performance space hyperbox for intermediate test points in overlaying 
design space hyperbox 

 

These three points generated in Figure 14 are evaluated to determine the corresponding 
objective function values. The objective function values are converted to indices that 
represent hyperboxes in the performance space. The performance space hyperboxes 
corresponding to these points are compared to the original Pareto frontier hyperboxes, 
and an exact or adjacent match is found. 

The rationale in doing so is that a design that maps to an adjacent hyperbox might  
be very close to the original hyperbox in terms of actual objective function values. 
Additionally, it is ascertained that if a large number of designs (but not the entire set) 
map to the original or its adjacent performance space hyperbox, the hypothesis of placing 
an overlaying hyperbox in the design space is validated. This scenario is depicted in 
Figure 15. 

Figure 15 Test point mapping to performance space hyperbox adjacent to original 

 

Thus, for Type 3 mapping, it is shown that a larger, overlaying hyperbox can be placed 
over all the design space hyperboxes. The design variable values and tolerances 
correspond to the centre of this overlaying hyperbox. The procedure to determine  
the design variable values for a given set of performance measures from the determined 
mapping is described as follows: 
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• for the given performance measure values, use the bounds of the objective function 
values obtained from the MOGA and chosen discretisation size to determine the 
performance space hyperbox indices 

• compare indices of given performance space measures to existing indices in mapping 
data sheet 

• obtain design variable values and tolerances for matching performance space 
hyperbox. 

An important point of note here is that this map only contains indices of performance 
space hyperboxes that are populated with Pareto optimal designs. The rationale behind 
using just the Pareto optimal hyperboxes is the same as mentioned in the background 
section. Because the given performance-measure values are known to maximise customer 
satisfaction, the point is assumed to be in the region of the Pareto set. Therefore, only 
design variable values for designs with performance metrics in the vicinity of the  
Pareto set are returned from this mapping study. For the Technical Feasibility Model,  
this mapping is critical since knowledge of the design variable values for a new design 
that is feasible in the engineering domain is obtained from it. 

Now that the mapping information for this paper has been presented, this work is 
applied to the case study problem involving two design variables and three objective 
functions introduced in Section 3.2. Mapping studies are carried out for this problem and 
the results are presented in Section 4.2. Detailed results of this study for the vehicle 
design problem are presented in Section 5. 

4.2 Mapping results for working example problem 

The process of mapping the performance space to the design space is illustrated using the 
example problem represented by equation (2). For the mapping study, the 3-D 
performance space is also discretised into equal sized hyperboxes, each side having a 
length of 0.2 units. Using this discretisation size and the bounds listed in Table 1, a total 
of 4,851 performance space hyperboxes exist of which 252 are populated with Pareto 
points as seen in the convergence study. Some important mapping measures determined 
in this study are presented in Table 2. 

Table 2 Measures determined from mapping study for 3-objective problem 

Mapping type Mapping description No. of pts 

1 Number of performance space hyperboxes containing one design 
mapping to ONE design variable hyperbox (contains only one 
design point) 

21 

1 Number of performance space hyperboxes containing more than 
one design mapping to ONE design variable hyperbox 

70 

2 Number of performance space hyperboxes containing more than 
one design mapping to MULTIPLE, adjacent design variable 
hyperboxes 

143 

3 Number of performance space hyperboxes containing more than 
one design mapping to MULTIPLE, non-adjacent hyperboxes. 

18 

 Total number of performance space hyperboxes 252 
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The results presented in Table 2 indicate the different mapping types discussed earlier. 
The first two entries in Table 2 correspond to Type 1 mapping where one performance 
space hyperbox maps to one design variable hyperbox. The first entry corresponds to 
having one design point in the performance space hyperbox while the second entry 
corresponds to multiple designs in one performance space hyperbox. The third entry in 
Table 2 is the number of performance space hyperboxes corresponding to Type 2 
mapping, while the number of performance space hyperboxes exhibiting Type 3 mapping 
is given in the fourth entry. The total number of populated hyperboxes is listed in the  
last entry. In addition to the numbers presented in Table 2, the results of this study also 
provides a map (a data spreadsheet) containing indices of the 252 performance space 
hyperboxes with the corresponding design variable values and respective tolerances.  
The procedure to determine the design variable values for a given set of performance 
measures from the determined map has been described earlier and is applied here to an 
example. 

Consider a hypothetical design with performance values given as shown in  
equation (4). 

1 2 3( , , ) (0.8, 2.75, 2.33).f f f =  (4) 

It is desired to determine the design variable values and corresponding tolerances that 
would result in the above performance measures. It is important to note that for the given 
case study problem, the design variable values can be easily found from the analytical 
expressions given in equation (2). However, the methods presented in this paper are 
generalisable to non-explicit problems that are inherently large in terms of number of 
objective functions, design variables and system constraints and also include 
computationally intensive analyses that need to be performed. For this example problem, 
design variable information for the given set of performance values is obtained from  
the mapping, as well as computed analytically from the problem definition and the  
two results are compared. The steps listed at the end of Section 4 are used first to 
determine the design variable information from the results of the mapping study: 

• use bounds and discretisations to determine indices of performance space hyperbox: 
using the bounds of Table 1, and discretisation size of 0.2, the indices for the given 
set of performance values are computed and result as (4,9,2) 

• compare indices to performance space indices: comparing the indices (4,9,2) to the 
results of our study, the given performance values lie in hyperbox number 71 

• determine the design variable information: reading off the design variable values 
from the data obtained from mapping, the design variable values are given in 
equation (5) 

( , ) (0.45 0.05,0.25 0.05).x y = ± ±  (5) 

Thus, without going back to the analytical functions that form the system analyses, 
design variable information is obtained for a new design with desired set of performance 
values. Computing the design variable values analytically, the result obtained is shown in 
equation (6). 

( , ) (0.4675,0.2375).x y =  (6) 
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As seen from equation (6), the design variable values obtained analytically lie in the 
tolerance range specified by the mapping results. For computationally intensive 
problems, determining design variable values without having to run the system analyses 
again is extremely useful. The mapping of the performance to design space for the given 
point is shown in Figure 16. 

Figure 16 Performance to design mapping of test point 

 

In Figure 16, the graph on the left is the 3-D performance space with the centroid of 
populated performance space hyperboxes shown along with the test point. The graph on 
the right is the 2-D design space again with the design variable values for the Pareto 
points along with the mapped test point. All information for Figure 16 is derived from the 
data obtained in the mapping study. 

Thus, it is seen that within the given tolerance, the mapping study provides useful 
design variable information given a set of specifications on objective function values.  
In addition, this is done without having to go back to the analyses and back-solving  
the objective functions to determine the design variable values. This tool is even more 
useful when the objective functions are not analytical functions but values obtained from 
a black box analyses system, where mathematical functions are not available to solve for 
the design variable values. To aid in the preliminary vehicle design process, the TFM 
incorporates feasibility assessment, optimality, performance to design mapping, and 
convergence information into a single automated tool. 

In this section, the methodology behind performance to design mapping is discussed 
and, as an illustration, is applied to a simple three objective problem introduced in  
Section 3.2. The convergence and mapping studies are developed for and applied  
in preliminary vehicle design frameworks. The results of these studies for the vehicle 
design problem are presented in Section 5. 

5 Case study results 

The methods presented in the previous sections are developed for application to large, 
complex, multi-objective optimisation problems. As part of this work, these studies  
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are conducted during the development of a Technical Feasibility Model (TFM) to test  
the feasibility of preliminary vehicle designs. The vehicle design problem involves five 
objectives, 11 design variables, and three constraints. The design variables used in this 
problem are a combination of eleven high-level vehicle dimensions – such as the 
vehicle’s overall length, width, and height – and discrete design configuration choices 
including specification of the vehicle’s powertrain and tire size. The objectives from  
this analysis are five vehicle attribute measures taken from several engineering 
disciplines such as energy management and occupant packaging. The constraints are 
developed to ensure that the candidate vehicle designs generated by the MOGA are 
realistically proportioned vehicles. 

As seen in the working example problem in previous sections, an exhaustive MOGA 
is needed for both the convergence study and for mapping from performance to design 
space. For this exhaustive case, the MOGA is run for 20 generations, resulting in over 
80,000 unique design evaluations. Also, the final population of this MOGA consists of 
thousands of unique non-dominated designs. To protect the proprietary data used in this 
study, all information relating to the performance and design spaces has been normalised. 
First, it is necessary to discretise the performance and design spaces using defined 
indifference thresholds. For the purposes of this study, the discretisations seen in Tables 3 
and 4 correspond to the performance and the design space respectively. This information 
is used in the next section to compare performance space hyperboxes in the convergence 
study. 

Table 3 Upper and lower bounds on objective functions for the vehicle design problem 

Objective Discretisation size Number of discretisations 
Acceleration – F1 0.1 10 
Fuel economy – F2 0.058 17 
Cargo volume – F3 0.13 8 
Front headroom – F4 0.165 5 
Shoulder room – F5 0.136 7 

Table 4 Upper and lower bounds on design variables for the vehicle design problem 

Design variable Discretisation size Number of discretisations 
Overall vehicle dimension – x1 0.145 8 
Overall vehicle dimension – x2 0.084 13 
Wheel position – x3 0.5 2 
Wheel position – x4 0.435 4 
Occupant position – x5 0.168 7 
Occupant position – x6 0.333 4 
Occupant position – x7 0.252 5 
Occupant position – x8 0.333 4 
Overall vehicle dimension – x9 0.210 6 
Wheel position – x10 0.167 7 
Powertrain configuration – x11 0.2 5 
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5.1 Convergence study for vehicle design problem 

Using the discretisation sizes for the performance space in Table 3, the performance 
space is divided into a collection of hyperboxes. While it may seem that the discretisation 
sizes selected for the model are large, this combination divides the performance space 
into 4,76,000 total hyperboxes. Thus, there is an obvious trade-off between the 
discretisation size and the total number of hyperboxes that are created in the performance 
space. From the 80,000 total evaluations completed in the exhaustive sampling, 11,885 
unique configurations are identified as non-dominated designs. These 11,885 designs are 
placed into 1,400 unique hyperboxes in the performance space. 

To study the convergence of the algorithm six different MOGA cases are generated 
and compared to the exhaustive Pareto frontier. These cases are developed to analyse the 
trade-off of maximum allowed evaluations and the ability of the algorithm to accurately 
capture the Pareto frontier. The different cases allowed for 500, 1000, 2000, 5000, 
10,000, and 20,000 evaluations to be completed. The goal of these studies is to evaluate 
the quality of the frontier generated relative to the exhaustive case, while limiting the 
number of evaluations to contain computational expense. After the maximum number of 
allowed evaluations has been reached, the non-dominated designs are placed into the 
appropriate hyperboxes and compared to the exhaustive MOGA. To start, the 500 
evaluation cases found 360 non-dominated designs that mapped to 108 unique 
performance space hyperboxes. Comparing these 108 hyperboxes to those of the 
exhaustive MOGA, 47 hyperboxes are found to be identical. The results of the remaining 
cases are shown in Figure 17. 

Figure 17 Number of hyperboxes filled as evaluations increase for the vehicle design problem 

 

The data in Figure 17 demonstrates how capturing the frontier becomes increasingly 
difficult as the number of objectives studied increases. Completing 20,000 evaluations 
yields only 21% of the exhaustive MOGA frontier exactly. It can also be seen that  
the increase from 5,000 to 20,000 evaluations identifies an extra 100 hyperboxes, or an 
extra 7% of the total frontier. There is a critical point in the graph located at 1,000 
evaluations where the relative change in identified frontier hyperboxes greatly decreases. 
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This indicates that a large number of evaluations would be needed to accurately capture 
the Pareto frontier identified by the exhaustive MOGA. 

The advantage of adjacency can clearly be seen for a higher dimensional problem, as 
shown in Figure 18. When using exact comparisons, only 21% of the entire frontier  
could be identified. Allowing for the first level of adjacency, the different cases capture at 
least double the original number of frontier hyperboxes. Increasing the levels of 
adjacency allows for a significant number of hyperboxes to be captured, reducing the 
need for an exhaustive number of evaluations and returning a suitable frontier 
representation. 

Figure 18 Convergence data for the vehicle design problem 

 

The study of convergence in this section is aided and completed with the application  
of discretising the performance space into a collection of hyperboxes. In the next  
section, the issue of mapping from the performance space to the design space is 
addressed using the discretisations within the design space. 

5.2 Mapping results for vehicle design problem 

The objective of this study is to develop tools that enable a designer to determine design 
variable values given desired performance levels. The Pareto set of points is determined 
by running the MOGA for 20 generations. For this work, it is assumed that the MOGA 
converges to the Pareto frontier in 20 generations. The number of hyperboxes that are 
determined are assumed to span the entire Pareto frontier. Given the discretisation sizes 
for the objective functions in Table 3, the following results are obtained: 

Number of Pareto points in original data (obtained from MOGA) = 11,885 

Number of hyperboxes needed to span the entire Pareto surface = 1,400. 
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Using the discretisations of Table 4, the design variable values of each performance  
space hyperbox are converted to indices representing the design space hyperbox  
they belong to. Using the mapping information of performance space hyperboxes to 
design space hyperboxes, the number of design space hyperboxes mapped by each 
performance space hyperbox is determined. These results are provided in the histogram 
of Figure 19. 

Figure 19 Histogram of number of design space hyperboxes mapped by each performance space 
hyperbox 

 

As seen in Figure 19, 443 out of 1,400 performance space hyperboxes are mapped  
to one design variable hyperbox. More detailed results of the mapping study are provided 
in Table 5. 

Table 5 Detailed mapping results for the vehicle design problem 

Number of performance space boxes mapping to one design space box  443 
Number of performance space hyperboxes mapping to one design space  
hyperbox with a single design point 438 

Number of performance space hyperboxes mapping to multiple adjacent design 
space hyperboxes 40 

Number of performance space hyperboxes mapping to multiple, non adjacent 
design space hyperboxes 917 

From Table 5, it is shown that 443 out of 1,400 performance space hyperboxes fall under 
Type 1 mapping, while 40 out of 1,400 performance space hyperboxes exhibit Type 2 
mapping. Additionally, as seen in Table 5, there exist 917 out of 1,400 performance space 
that have Type 3 mapping. For these 917 performance space hyperboxes, an overlaying 
hyperbox is placed and 3 intermediate design points generated as described in Section 4. 
The results for the 917 midpoints generated are given below followed by a discussion of 
the results. 
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Number of designs that map to the original hyperbox = 172 

Number of designs that map to a hyperbox adjacent to the original hyperbox = 690 

Number of designs that are infeasible = 176. 

From the above results, it is seen that 862 (690 + 172) of the 917 designs map to at least a 
hyperbox adjacent to the original hyperbox. Based on the earlier discussion, this validates 
placing an overlaying hyperbox over mapped design space hyperboxes that are not 
adjacent to each other since 94% of the points map back to the original or adjacent to 
original performance space hyperbox. The centre of the hyperbox determines the design 
variable values for the given performance inputs with distances to the extremes of the 
hyperbox forming the tolerances of the design range. 

It is important to note that 176 of the 917 designs are evaluated as infeasible, which 
includes vehicle designs mapped to the original and adjacent performance hyperboxes.  
It is determined that these designs violated the upper bound of one of the geometric 
constraints. The largest infeasibility value for the geometric constraint is only 0.8 mm 
and is considered negligible in this study. Therefore, for this problem, the overlaying 
hyperbox is used to determine design variable information. 

In this section, the preliminary vehicle design problem is introduced and results  
from the convergence and mapping studies are presented for this problem. It is seen from 
the convergence study results that a smaller number of system analyses can be used to 
obtain a representation of the Pareto set and the corresponding vehicle design 
configuration can be obtained using the results from the performance to design mapping 
study. In Section 6, concluding remarks and sources of future work are cited. 

6 Conclusions and future work 

In this paper, studies are presented to analyse the convergence behaviour of a  
Multi-Objective Genetic Algorithm by reducing the number of function evaluations  
that can be performed. Though the process is application dependent, it can be concluded 
that a set of non-dominated solutions can be obtained in place of the true Pareto set using 
a smaller number of function evaluations. This is achieved by applying the MOGA in two 
steps, where the first step of the MOGA uses some of the available function evaluations 
to cluster around one region of the Pareto set, and in the second step the MOGA uses the 
rest of the evaluations to populate the remaining regions of the Pareto surface. 

This paper also includes a study of the mapping between the performance and design 
space. It is shown that for a new design that is close to the Pareto solution set, design 
variable values and corresponding tolerances can be determined without repeating  
the analyses. This is done by dividing the two spaces into discrete regions of indifference 
and then studying the relationships between the discrete regions in the performance and 
design spaces. 

Future work in this area includes developing methods for studying MOGA 
convergence without explicitly running the algorithm exhaustively to generate  
a representation of the ‘true’ Pareto set. This would include the development and 
application of metrics to assess the goodness of a set of non-dominated designs obtained 
from a smaller number of function evaluations. Additionally, the performance to design 
mapping could also be expanded to include performance space points within the feasible 
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region so that the performance of any combination of design variable settings could  
be assessed whether or not its performance is Pareto optimal. 
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