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Exploring Product Solution
Differences Due to Choice
Model Selection in the
Presence of Noncompensatory
Decisions With Conjunctive
Screening Rules
Research in market-based product design has often used compensatory preference
models that assume an additive part-worth rule. These additive models have a simple,
usable form and their parameters can be estimated using existing software packages.
However, marketing research literature has demonstrated that consumers sometimes use
noncompensatory-derived heuristics to simplify their choice decisions. This paper
explores the quality of optimal solution obtained to a product line design search when
using a compensatory model in the presence of noncompensatory choices and a noncom-
pensatory model with conjunctive screening rules. Motivation for this work comes from
the challenges posed by Bayesian-based noncompensatory models: the need for screening
rule assumptions, probabilistic representations of noncompensatory choices, and discon-
tinuous choice probability functions. This paper demonstrates how respondents making
noncompensatory choices with conjunctive rules can lead to compensatory model estima-
tions with distinct respondent segmentation and relative, large absolute part-worth val-
ues. Results from a product design problem suggest that using a compensatory model can
provide benefits of smaller design errors and reduced computational costs. Product
design optimization problems using real choice data confirm that the compensatory
model and the noncompensatory model with conjunctive rules provide comparable solu-
tions that have similar likelihoods of not being screened out when using a consideration
set verifier. While many different noncompensatory heuristic rules exist, the presented
study is limited to conjunctive screening rules. [DOI: 10.1115/1.4035051]

1 Introduction

Companies continually strive to better understand customer
preferences for product performance and feature inclusion so that
they can be successful in a globally competitive market. Market-
driven product design research has explored the use of discrete
choice analysis as one tool for estimating customer preferences by
implementing variations of the generalized linear model [1–4].
Many discrete choice model forms assume that consumers make
compensatory choices based on an additive utility rule; that is,
high levels on some features can compensate for low levels on
other features.

However, market research papers have demonstrated that
noncompensatory choice models often improve model realism
and accuracy in predicting consumers’ choices [5–8]. Imagine a
consumer, who does not want a manual transmission, shopping
for a new car. The consumer first uses a heuristic rule to narrow
their choice to a set of cars equipped with an automatic transmis-
sion. The remaining cars are then compared using an additive util-
ity rule. This choice behavior is called a consider-then-choose
process.

Since the early 2000s, there has been increased development
in modeling noncompensatory choices using computationally
expensive methods like Bayesian inference and machine learning

techniques. However, the effectiveness of using noncompensatory
models in a product design search has not been extensively
explored. Nonlinear programming relaxations for market-system
design optimization problems were proposed in Ref. [9] to deal
with the discontinuous likelihood functions of a consider-then-
choose model. This work was extended in Ref. [10] to investigate
how noncompensatory choice behavior impacted profit when
making design decisions. These studies, however, focused on
evaluating predictive power and design error at the population
level without exploring individual-level part-worth estimates.

The objective of this paper is to compare the optimal product
line solutions when using Bayesian-based noncompensatory mod-
els with conjunctive screening rules and a compensatory hierarch-
ical Bayes mixed logit (HB-ML) model. This study is motivated
by the challenges of making screening assumptions and inferring
the screening rules used by a respondent population. Even when
these screening rules can be correctly inferred, estimating a two-
stage model can be challenging, leading to errors that can lead to
suboptimal design decisions. Further, the probabilistic representa-
tions of noncompensatory choice and the discontinuous choice
probability functions that often accompany noncompensatory
models make optimization more challenging.

The suitability of using existing noncompensatory models is
discussed in Sec. 2 by reviewing the existing models. In particu-
lar, Sec. 2.2 addresses the limitations of an existing noncompensa-
tory model. Section 3 describes how to explore the performance
of using a compensatory model in the presence of noncompensa-
tory choices. This concept is examined in Sec. 4 by analyzing syn-
thetic data. Section 5 deals with real choice data to explore
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differences in a product optimization using both the compensatory
and noncompensatory models.

2 Background

The necessary background knowledge about discrete choice
models is introduced to aid in the explanation of this study.
Section 2.1 briefly reviews the fundamental concepts of
compensatory models capable of estimating individual-level part-
worths—latent class multinomial logit (LC-MNL) and hierarchi-
cal Bayes mixed logit (HB-ML). In Sec. 2.2, various heuristics of
noncompensatory choices and their modeling methods are
reviewed, mainly focusing on the HB multinomial probit model
with conjunctive screening rule.

2.1 Compensatory Choice Models. The assumption behind
compensatory models is that consumers weigh and compare all
available attributes across all products before making a selection.
Discrete choice analysis is used to model product demand by cap-
turing a customer’s choice behavior [11]. The choice utility that
person n obtains from alternative i can be expressed as a sum of
an observed utility Vni and an unobserved random disturbance eni

as in the following equation [12–15]:

Uni ¼ Vni þ eni ¼ bT
n xni þ eni (1)

Here, bn is a vector of part-worths for the n th individual, and xni

is a vector of values describing the configuration of design
alternative i. Usually, bn is unknown and estimated statistically.
For the unobserved random disturbance, eni, there are many possi-
ble form choices. When using the standard normal distribution
with i.i.d. (independent and identically distributed) assumption,
the result is a probit model. When using a Gumbel distribution
with the i.i.d. assumption, the outcome is a logit model because
the difference between two extreme value distributions has a
logistic distribution. Probit and logit models are nearly identical,
except that the logit model has a slightly heavier tail [16]. Using
the logit model, the choice probability that person n chooses an
alternative i is obtained using the following equation [12]:

Pni ¼
ebT

n xniX
j

ebT
n xnj

(2)

Preference heterogeneity is defined as a variation in taste across
individuals [17] and leads to differentiated product specifications.
The most widely used models to represent heterogeneity are the
latent class multinomial logit (LC-MNL) model and the hierarchi-
cal Bayes mixed logit (HB-ML) model. The LC-MNL model was
initially introduced as a way of formulating latent attitude varia-
bles from dichotomous survey items [18]. Since an assumption of
this model is that latent variables are categorical, it has been
extended to include nominal variables using a maximum
likelihood algorithm [19]. The LC-MNL model first classifies
individuals into several segments and then estimates segment-
level part-worths. The preferences within each segment are esti-
mated using the deterministic parameters of a multinomial model.
Simultaneously, an individual’s membership probability in each
segment is estimated. In the design community, latent class analy-
sis has been used by Besharati et al. [20], Williams et al. [21], and
Turner et al. [22].

The HB-ML model defines individual-level preferences using
continuous distribution functions. In a Bayesian inference of
mixed logit models, model parameters are determined using mul-
tivariate distributions where b � Nðb;WÞ. This model describes
the probabilistic representation of choice behaviors by employing
Bayesian inference for data augmentation and Markov-Chain
Monte-Carlo (MCMC) methods to integrate over the parameter
space. It is called a hierarchical model because there are two

levels. The assumption at the higher level is that respondent pref-
erences are normally distributed. At the lower level, a multinomial
logit model is assumed to quantify choice probability [23]. These
differences enable the HB-ML model to deal with stable
individual-level results when respondents provide multiple obser-
vations. This model has been recently applied by Wang et al. [24],
Shiau et al. [25], Foster et al. [26], Hoyle et al. [27], Kang et al.
[28], and Michalek et al. [1].

While compensatory models using an additive utility rule have
been widely used due to their simplicity, the same models also
impose several limitations [12]. First, the additive utility rule may
not accurately model real choice behavior because respondents
often find it challenging to consider the entire set of product attrib-
utes when making a choice. Second, IIA (independence from irrel-
evant alternatives) becomes a challenge when using compensatory
models because the choice probability of an alternative is affected
by the presence of other alternatives. This issue arises from the
i.i.d. assumption of the error term eni. Some of these limitations
are also inherent to Bayesian-based noncompensatory models, as
discussed in Sec. 2.2.

2.2 Noncompensatory Choice Models. Researchers in
economics and psychology have demonstrated that consumers use
various heuristics to simplify their choice decisions [29]. By
adopting heuristics, a two-stage decision process—referred to as a
consider-then-choose model—has received attention because of
its added realism. By employing noncompensatory screening
rules, consumers narrow their decisions to a small set of products
called a consideration set [10]. Then, they use a compensatory
choice rule to evaluate the remaining products and make a
selection.

Various heuristic decision rules for noncompensatory
choices have been proposed, including conjunctive, disjunctive,
lexicographic-by-aspects, elimination-by-aspects, and disjunctions
of conjunctions (DOCs) [29]. The existing studies about
Bayesian-based noncompensatory models [8,30] suggest that the
conjunctive rule model is effective in both model fitness and pre-
dicting individual-level estimates. Hence, this article focuses on
consider-then-choose models with the conjunctive screening rule,
where consumers consider if the product has all “must have” and
no “must not have” aspects [31]. It is formed by multiplying an
indicator function across the attribute of an alternative as in the
following equation [30]:Y

m

Iðlim > cmÞ ¼ 1 (3)

Here, lim is the level of attribute m for choice alternative i. The
cutoff value cm is the smallest level of the attribute that needs to
be present for the consumer to consider the alternative [32]. The
indicator function indicates whether or not a choice alternative is
screened out in a noncompensatory choice. Thus, the indicator
function Ið�Þ is equal to 1 when a level lim exceeds a threshold
value cm, and this indicates that the choice alternative i is not
screened out. If the alternative has a lower level of the attribute
than the cutoff value, the product is screened out.

Advances in Bayesian inference, machine learning, and greed-
oid languages make it possible to quantify consider-then-choose
scenarios for a variety of heuristics. Noncompensatory models of
conjunctive screening rules have also been applied to hierarchical
Bayes multinomial probit (HB-MNP) models. The most signifi-
cant difference from the HB-MNP is to additionally estimate
the cutoff values in the upper level of the hierarchy, as in the
following equation [8,30]:

Pni ¼ Prob Uni > Unj for all j such that
Y

m

Iðlnjm > cnmÞ ¼ 1

 !

(4)
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lnjm is the level of the attribute for respondent n for alternative j
and attribute m. cnm is a respondent-level threshold of attribute m
for respondent n. When an attribute is continuously distributed, it
is assumed that the cutoff values are normally distributed. When
an attribute consists of discrete levels, a multinomial distribution
can be adopted such that cnm � MultinomialðhmÞ, where hm is the
vector of multinomial probabilities associated with the grid for
attribute m. Each level is tested to determine the highest possible
cutoff value ðc�nmÞ from allowable cutoff values ðca

nmlÞ using the
Metropolis–Hastings algorithm [12] based on a probability given
in Eq. (5) [30] where l indicates attribute levels

cnm ¼ ca
nml with probability

I ca
nmlð ÞhmlX

l

I ca
nml

� �
hml

(5)

This model returns an individual’s part-worths, cutoff values, and
cutoff probabilities each draw. Disjunctive and elimination-by-
aspect rules can also be modeled using Bayesian inference [8,30].

The choice probabilities can be expressed as (J � 1)-dimen-
sional integrals over the differences between the errors because
probit models are not closed form [12]. These differences are
defined as ~Vnij ¼ Vni � Vnj and ~enij ¼ eni � enj. Then, for the
consider-then-choose process using a probit model, the choice
probability that individual n chooses any alternative i that is in the
consideration set is given by the following equation [30]:

Pni ¼

ð
Ið ~Vnij þ ~enij > 0 8j 6¼ iÞ/ðenÞden

0

i; j 2 Cn

i; j 62 Cn

8<
: (6)

Ið�Þ is an indicator of whether the statement in parentheses holds,
/ðenÞ is the joint normal density with zero mean and covariance
X, and Cn denotes a consideration set for consumer n. Noncom-
pensatory attributes are used to determine whether a choice alter-
native is in a consideration set, and the remaining compensatory
attributes are used in part-worth estimation.

The performance of noncompensatory models has been proven
in terms of model fitness and predictability [8,30,32–35]. How-
ever, from the standpoint of design optimization, noncompensa-
tory models have some inherent challenges:

� Inadequate screening rule assumptions may lead to an incor-
rect estimation of noncompensatory choices. Further, there is
no general form to describe all noncompensatory heuristics.
For example, the HB-MNP model with conjunctive screening
rules can only describe choices that screen out attribute lev-
els lower than the minimum requirements. This form may be
inappropriate for nonincremental levels such as color or
brand.

� Aggregate part-worths are difficult to use due to their proba-
bilistic cutoff values. Each draw for a noncompensatory
model results in a set of part-worths and cutoff values.
Although MCMC can be used to consider all draws, this
requires considerable computational power.

� Discontinuous choice probability functions (Eq. (6)) can
cause numerical difficulty when precisely solving design
constraints [9].

The most significant difference between compensatory and
noncompensatory models is that cutoffs are estimated by
determining the indicator value (Eq. (3)) at each MCMC draw to
identify conjunctive rules. However, these indicator values are
averaged across all respondents. Therefore, if aggregate part-
worths are to be used to reduce computational expense, Eq. (4)
cannot be directly used to predict choice probability. For compen-
satory models, however, respondent heterogeneity information
can be maintained without the need for saving and using all
draws.

Considering these challenges, compensatory models have
numerous advantages from a product optimization perspective:
(1) generalized forms, (2) draw information can be aggregated,
and (3) likelihood functions are continuous. Further, when esti-
mating part-worths at the individual-level, large absolute part-
worth values (relative to the other part-worth values estimated in
a zero-centered formulation) can cause the additive part-worth
rule to act like a noncompensatory rule [29]. For these reasons,
this article explores the challenges of using noncompensatory
models and compares the results of a product optimization to
those obtained when using compensatory models in the presence
of noncompensatory choices.

3 Technical Approach

3.1 Synthetic Choice Data Generated by Virtual Agents.
This paper explores how compensatory models can approximate a
two-stage choice process, and examines the differences in an
optimal design search when using compensatory and noncompen-
satory models. This approach is driven by the hypothesis that dis-
tinct population segments can be identified from the individual-
level part-worths for specific attributes where noncompensatory
decisions might be made. To verify this hypothesis, a two-stage
process using the LC-MNL and HB-ML models is proposed, as
shown in Fig. 1.

Discrete choice data are generated to mimic the consider-then-
choose process, and are mathematically modeled using both non-
compensatory and compensatory models. The HB-MNP model
with a conjunctive screening rule is used as the noncompensatory
model. The results of the cutoff distributions and posterior esti-
mates show how the noncompensatory model describes the
consider-then-choose process. To construct and understand the
compensatory model, both LC-MNL and HB-ML models are
used. A latent class analysis is first conducted to segment the pop-
ulation, and then the individual-level preferences are further
explored based on the segmentation information. The latent class
results are investigated to determine how attributes where

Fig. 1 Flowchart of the study used to compare compensatory
models and a Bayesian-based noncompensatory model with
conjunctive screening rules for synthetic choice data
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noncompensatory decisions are made yield segments in terms of
membership probability and attribute importance. Then, the
obtained segments are evaluated using individual part-worths in
terms of attribute importance and heterogeneity representation.

A product design problem is then solved using a genetic algo-
rithm (GA) where individual-level preferences are used; the HB-
ML and HB-MNP models are used as the compensatory and non-
compensatory models, respectively. The design results are com-
pared to show the suitability of compensatory modeling of the
two-stage choice process for product search problems.

3.2 Real Choice Data Generated by Human Respondents.
Choice data do not directly describe which respondents actually
made noncompensatory choices, or what heuristics they used to
make those choices. Thus, it is impossible to apply the same tech-
nical approach used to analyze the outcomes from synthetic
choice data because “true” preferences are not available. For this
reason, a different approach is proposed to assess and compare the
optimum product designs of compensatory and noncompensatory
models, as shown in Fig. 2.

Given part-worth estimates for both HB-ML model and
HB-MNP model with conjunctive rules, optimum product design
solutions can be obtained by maximizing the choice probability of
the solution. Then, a hypothetical noncompensatory screening
rule is assumed. To consider many noncompensatory choice sce-
narios, the disjunctions of conjunctions (DOCs) rule that general-
izes conjunctive, disjunctive, and subset conjunctive rules [31] is
used because the choice heuristics used by respondents are
unknown. For an optimum product design, a consideration set
verifier is simulated to calculate the likelihood (LC) that the opti-
mal solution is not screened out at the noncompensatory choice
stage. This likelihood is obtained by dividing the number of feasi-
ble screening rules by the total number of choice simulations.

The need for a consideration set verifier when using choice task
data is shown in Fig. 3. Assume that respondents took a discrete
choice survey consisting of ten choice tasks involving products
with two attributes and five total levels (three for attribute 1 and
two for attribute 2). The data in Fig. 3 show the cumulative num-
ber of times each attribute level was chosen in the ten choice
tasks. For product 1, created using level L3 of attribute A1 and
level L1 of attribute A2, it is clear that this product was not
screened out because the respondent chose these two attribute lev-
els at least once when completing the choice tasks. However, for
product 2, created using level L1 of attribute A1 and level L1 of
attribute A2, the analysis is more complicated.

From the data available, it cannot be determined if the respond-
ent screened out level L1 of attribute A1 using a noncompensatory
screening rule, or if this attribute level was never chosen because
of the compensatory tradeoffs that occur after the consideration
set has been created. Hence, when running a consideration set
verifier for several screening rules, the minimum likelihood that a
product is not screened out can be estimated using a hypothetical
noncompensatory choice simulation.

If it is assumed that a company introduces multiple new prod-
ucts into the market, the product line can be regarded as being

included in the consideration set if any product in the line is not
screened out. Thus, the general formula to calculate the likelihood
value is obtained as

LC ¼

X
Nncs ;Nresp

1Cn
xð Þ

Nncs � Nresp

(7)

where Nncs and Nresp indicate the number of noncompensatory sce-
narios and the number of respondents, respectively. The function
1Cn
ðxÞ results in 1 if a product line design x is an element of a

consideration set and 0 if x is not in a consideration set.

4 Case Study Using Synthetic Choice Data

Generated by Virtual Agents

As shown in Sec. 3.2, choice data itself cannot be used to
explicitly state respondents’ choice processes. However, this
information can be captured if synthetic data are created using
predefined virtual agents. In this study, virtual respondents are
generated using conjunctive screening rules because the existing
studies of the Bayesian-based noncompensatory models suggest
that the conjunctive rule model shows the best performance in
both model fitness and predictability at individual-level estimates
[8,30]. Synthetic choice data are collected using a simulated dis-
crete choice survey. Part-worth estimates from the compensatory
model and the noncompensatory model with conjunctive screen-
ing rules are obtained and compared. Finally, a product optimiza-
tion is performed to compare differences in solution. Since only a
conjunctive rule and a conjunctive model are used in this case
study, the findings and discussions are limited to the conjunctive
rule and its associated noncompensatory model. Exploring other
forms of noncompensatory heuristic rules such as disjunctive,
lexicographic-by-aspects, elimination-by-aspects, and disjunctions
of conjunctions is a future research topic, as discussed in Sec. 6.

4.1 Generating Synthetic Choice Data. To generate syn-
thetic survey data, a choice-based conjoint survey is designed
around a vehicle selection scenario. Attributes and levels used in
this study are described in Table 1. The manual transmission,
automatic transmission without shift, and automatic transmission
with shift are called MT, AT1, and AT2, respectively. TM is used

Fig. 2 Conceptual procedure for consideration set verifier
using hypothetical screening rules

Fig. 3 An example of a simulated noncompensatory choice
using discrete choice data obtained from an actual survey
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as an abbreviation of “transmission,” and the capital letter A with
a number is used to represent different product attributes. Survey
questions are generated using Sawtooth SSI Web [36]. Respond-
ents are asked to evaluate 16 buying scenarios and four holdout
questions. Each scenario contains four product alternatives and a
fifth no-buy option.

Table 2 shows the predefined preferences of the 200 virtual
respondents used to form consideration sets at the first choice
stage. Respondents use only the transmission and sunroof attrib-
utes when making noncompensatory choices, and lower levels are
screened out. For example, respondents cannot screen out AT1
because the conjunctive rule assumes there is a minimum require-
ment value. If a respondent screens out AT1 only, the noncompen-
satory model with conjunctive rule cannot catch the behavior and
the respondent is considered to make compensatory choices.

Respondents in groups 1–4 exhibit noncompensatory behavior
and narrow their choice alternatives into a consideration set.
Then, they compare all remaining alternatives and choose one. To
mimic a real choice situation, if no alternative in the consideration
set satisfies the minimum utility requirement, the no-buy option is
selected. Respondents in group 5 perform only compensatory
choices. To introduce heterogeneity, respondent preferences
(excluding price) are generated based on uniform distributions
with predefined intervals. Price preferences are manually gener-
ated and constrained so that respondents prefer lower prices. The
virtual survey results in 3200 observations.

Attribute importance of the synthetic data for each group is
shown in Table 3. Since attribute importance is calculated based
on an additive rule assumption, the importance of noncompensa-
tory attributes cannot be evaluated. However, maximum and mini-
mum utility values of noncompensatory variables exist. These
values are defined as

maxðVncÞ þ
X

h

minðVc;hÞ > Vthreshold

> minðVncÞ þ
X

h

maxðVc;hÞ (8)

where V is a part-worth set for each attribute, h indicates the num-
ber of compensatory attributes, while nc and c indicate noncom-
pensatory and compensatory attributes, respectively. maxðVncÞ
indicates a part-worth of the noncompensatory attribute in the
consideration set and minðVncÞ indicates a part-worth set of the
noncompensatory attribute excluded from the consideration set.
From Eq. (8), the smallest range of maxðVncÞ �minðVncÞ is
obtained as

P
hmaxðVc;hÞ �

P
hminðVc;hÞ. Hence, the minimum

attribute importance of a noncompensatory attribute is described
by the following equation [37]:

max Vncð Þ �min Vncð Þ

max Vncð Þ �min Vncð Þ þ
X

h

max Vc;hð Þ �min Vc;hð Þ
� � (9)

From this calculation, the minimum attribute importance of a non-
compensatory attribute is 50%.

4.2 Noncompensatory Choice Modeling With Conjunctive
Rules. The HB-MNP with conjunctive rule was fit using R [38].
Inference was conducted using Bayesian MCMC methods. The
chain was run for the first 5000 iterations, with the final 5000 iter-
ations used to estimate the moments of the posterior distributions.

Table 4 shows the aggregate estimates of the cutoff probability
obtained using the conjunctive model. For discrete attributes, cut-
offs are reported in terms of multinomial point mass probabilities.
Each level is recorded as an integer (e.g., 0, 1, 2) and the recorded
values indicate lnim in Eq. (4). Thus, a grid of possible cutoff val-
ues, cnm, is also specified (e.g., �0.5, 0.5, 1.5, 2.5). The lowest
cutoff value indicates that all levels are acceptable and that
respondents made compensatory choices. The highest level indi-
cates that none of the levels are acceptable [30]. A cutoff value of
0.5 indicates that only the lowest level is unacceptable, and 1.5
indicates that level 1 and 2 (recorded values 0 and 1) are screened
out.

The probabilities of each cutoff obtained from the conjunctive
model closely correspond with the predefined noncompensatory
preferences in Table 2. For example, 40% of the total respondents
were predefined to screen out MT in the virtual survey, and the
conjunctive model results in 38% doing so. Estimates of cutoff
probability equal to approximately 2% reflect the influence of the
prior distribution and the inherent noise of MCMC. Therefore,
respondents are shown to evaluate attributes 3, 4, 5, and price
using a compensatory rule set.

For noncompensatory attributes, the part-worth estimates
shown in Table 5 approach zero. This is because the choice proba-
bility is evaluated using only the alternatives in the consideration
set. If an alternative is in the consideration set, then its choice
probability is determined relative to the other alternatives in the

Table 1 Car attributes and levels used in virtual survey

Transmission Sunroof A3 A4 A5 A6 Price

Level 1 MT No Two levels Four levels Four levels Four levels $21,000
Level 2 AT1 Yes $20,000
Level 3 AT2 $19,000
Level 4 $18,000

Table 2 Predefined preferences of virtual respondents

Group Number of respondents Screen out Must-have feature in consideration set

1 40 MT & no sunroof AT1/AT2 & sunroof
2 40 MT AT1/AT2
3 40 MT & AT1 AT2
4 40 No Sunroof Sunroof
5 40 Only perform compensatory choices

Table 3 Attribute importance of the synthetic data

Group TM Sunroof A3 A4 A5 A6 Price

1 50.0 4.2 9.6 10.1 9.6 16.6
2 50.0 4.7 5.0 8.2 8.8 8.5 14.9
3 50.0 5.7 4.2 8.6 9.6 7.5 14.4
4 7.1 50.0 4.8 8.0 8.3 7.8 14.0
5 11.7 8.1 8.7 14.9 15.1 16.1 25.3
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set. If an alternative does not pass the screening rule, then its
choice probability is zero. Thus, the screened alternative is not
included in the posterior estimation processes. This leads to com-
petition of alternatives in the consideration set that only has
acceptable product features. Eventually, distinctions in posterior
estimates between features are diminished and the estimates
approach zero. In other words, noncompensatory attributes are
excluded from part-worth estimation as explained in Sec. 2.2.
Because of this, the part-worths of noncompensatory attributes,
such as transmission and sunroof, are estimated to be relatively
flat in comparison to the other attributes, as shown in Table 5.

4.3 Compensatory Choice Modeling

4.3.1 Latent Class Analysis. Segmentation of a population
often occurs when respondents within a group have relatively sim-
ilar preferences, but those preferences are quite different from
group to group. It is hypothesized that if there are distinct attrib-
utes used to form consideration sets, these attributes will play the
most significant role in defining different preferences from group
to group. Latent class estimation was conducted using Sawtooth
Software’s CBC Latent Class module [39]. Statistical measures
assess the goodness of fit [40], but often provide conflicting
information on the optimal number of classes in the model. Based
on the low rate of change in these statistics for models with five
classes or more, the latent class model fit with five classes was
selected.

Table 6 shows a comparison between the predefined respondent
groups originally defined in Table 2 and latent class estimation.

As listed in Table 2, the five groups are expressed using Arabic
numbers according to their noncompensatory choices. The groups
obtained from the latent class analysis, expressed using Roman
numbers, are nearly identical to the predefined groups. In particu-
lar, all respondents in groups 1, 2, and 3 are placed in segments I,
II, and III. Also, the 40 respondents in group 4, who were defined
to screen the no-sunroof feature, are divided into segments I and
IV. Since the “no sunroof” feature is screened out of segments I
and IV, the two respondents moved from group 4 to segment I are
still considered to maintain their preferences. The estimates of the
respondents in group 5 depend on random preference generation
and survey design. Even though these respondents did not make
noncompensatory choices, if cumulative choices are rationally
biased, it could be defined as a member of the segment that does
make noncompensatory choices. This is because the latent class
analysis does not estimate noncompensatory choices, but simply
classifies respondents with similar preferences.

Membership probability demonstrates how effectively respond-
ents are categorized into groups. Latent class estimation assumes
that each respondent has some nonzero probability of belonging
to each group. If the segmentation strategy fits the data very well,
membership probabilities approach one. As shown in Table 7,
respondents effectively have membership probabilities in only
one class. The average maximum membership probability is
99.36%.

The attributes used to form consideration sets may be inferred
from the attribute importance associated with each group. As
shown in Table 8, the noncompensatory attributes associated with
each segment have greater than 50% importance, similar to the
result found in Eq. (9). Additionally, the attributes that result in
the formation of consideration sets have much greater importance

Table 4 Threshold estimates for the posterior means of the conjunctive model

Probability of each cutoff Probability of each cutoff

Attribute
Level

(recorded value)
Possible
cutoff

Predefined
(%)

Obtained
(%) Attribute

Level
(recorded value)

Possible
cutoff

Predefined
(%)

Obtained
(%)

TM MT (0) �0.5 40 38.0 A5 1 (0) �0.5 100 88.6
AT1 (1) 0.5 40 38.8 2 (1) 0.5 0 3.6
AT2 (2) 1.5 20 20.6 3 (2) 1.5 0 2.6

2.5 0 2.7 4 (3) 2.5 0 2.6
3.5 0 2.6

Sunroof No (0) �0.5 60 58.1
Yes (1) 0.5 40 39.2 A6 1 (0) �0.5 100 88.5

1.5 0 2.8 2 (1) 0.5 0 3.6
3 (2) 1.5 0 2.6

A3 1 (0) �0.5 100 94.5 4 (3) 2.5 0 2.6
2 (1) 0.5 0 2.8 3.5 0 2.6

1.5 0 2.7
Price $21,000 (0) �0.5 100 87.6

A4 1 (0) �0.5 100 89.2 $20,000 (1) 0.5 0 4.3
2 (1) 0.5 0 3.0 $19,000 (2) 1.5 0 2.9
3 (2) 1.5 0 2.6 $18,000 (3) 2.5 0 2.6
4 (3) 2.5 0 2.6 3.5 0 2.6

3.5 0 2.6

Table 5 Part-worth estimates for the noncompensatory model

Attribute Level Posterior mean Attribute Level Posterior mean

TM AT1 0.09 A5 2 �0.30
AT2 0.05 3 �0.26

4 0.16
Sunroof Yes �0.07

A6 2 0.07
A3 2 0.40 3 �0.41

4 �0.23
A4 2 0.34

3 0.32 Price $20,000 1.78
4 0.15 $19,000 3.31

$18,000 5.08

Table 6 Number of members in each group

Latent class

I II III IV V Sum

Predefined group 1 40 40
2 40 40
3 40 40
4 2 38 40
5 1 4 10 25 40

Sum 43 44 40 48 25 200
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than the other attributes. Despite the strong inference about the
attributes used in noncompensatory choice, latent class analysis
does not explicitly identify if a noncompensatory screening is
used. The result in Tables 7 and 8 shows that if there are noncom-
pensatory choices, and the latent class results in estimates with
high membership probabilities, importance for the attribute driv-
ing the noncompensatory rule will be higher than 50%.

4.3.2 Hierarchical Bayes Mixed Logit Model. While the num-
ber of segments and the features forming consideration sets can be
speculated using the LC-MNL model, individual-level preferences
can be estimated using the HB-ML model. This section provides
detail on how the HB-ML model estimates mimic the two-stage
choice process by presenting part-worths, attribute importance,
and rank orders of the feature levels.

Aggregate zero-centered part-worth estimates for the HB-ML
model are shown in Table 9. The HB-ML model was fit using the
Sawtooth Software CBC/HB module [23]. For each respondent,
10,000 random draws were performed before averaging the next
10,000 random draws to create the posterior means. It is observ-
able that the transmission and sunroof attributes have posterior
means with larger deviations because they are used to mimic the
behavior associated with creating the consideration sets. In con-
trast, the posterior means of the other attributes are relatively flat.

The results in Table 9 are for all respondents. Borrowing
segmentation information from the latent class analysis, the
individual-level part-worth estimates obtained from the HB-ML
model are grouped by segment. For brevity, only the attributes
used when making noncompensatory choices are listed. From
these results, the hypothesis made in Sec. 3.1 that large absolute

part-worth values (with respect to the other attributes) would be
captured in the individual-level estimates is verified using the
segment-level part-worths and the distributions of the individual-
level part-worths.

A comparison of model performance using predictive accuracy
is provided in Table 10. Predictive accuracy is defined by how
well the model can predict a future set of observations. For syn-
thetic choice data without added variability, a hit-rate measure
also describes how well a model captures the predefined preferen-
ces of the virtual respondents. Using the four holdout questions, a
hit-rate measure is obtained for each model. Hit rate is quantified
using respondent-level aggregate part-worths for the compensa-
tory model by averaging draw information. For the noncompensa-
tory model, 500 draws were used because of the inability to
calculate choice probabilities using aggregate part-worths as dis-
cussed in Sec. 2.2. Draw information could have been used for the
compensatory model, and it would be expected that this would
lead to a small change in predicted hit rate. However, this would
have led to increased computational expense.

The results presented in Table 10 show that the compensatory
model (HB-ML) has a slightly greater predictive accuracy than
the noncompensatory model (HB-MNP with conjunctive rule).
The original research paper presenting the noncompensatory
model suggested that the HB-MNP model with conjunctive rule
should have a greater predictive accuracy than a compensatory
model (HB-MNP) [30]. However, this study demonstrates that a
compensatory model can be more accurate in some scenarios,
even though the comparison is between a logit model and a probit
model. What is most significant is that using a compensatory
model does not automatically introduce large prediction errors,
even when noncompensatory decisions are being made.

This result could be caused by the inherent noise of MCMC for
the cutoff estimation of the noncompensatory model discussed in
Sec. 4.2. Although the hit rate difference is small, the larger hit
rate for the HB-ML model is expected to reduce potential design
errors due to incorrect preference estimation than the conjunctive
rule model. However, this outcome is also influenced by holdout
question design. Therefore, predictive accuracy measures alone
cannot be used to generalize the performance of both models.

Table 11 shows that segments I–IV for the compensatory model
have large absolute part-worth coefficients compared to the rela-
tively flat part-worths estimated for segment V. The large absolute
part-worths at the individual level are also observed in the histo-
gram displayed in Fig. 4. The presence of large absolute part-
worth values in a compensatory model is significant because if a
part-worth value for an attribute is large enough, it can effectively
mimic the upper stage of a noncompensatory screening rule. In
the aggregate estimates of the HB-ML model, it is also noticeable
that the AT1 feature of segment III is relatively flat. However,
MT has a large absolute value despite the fact that the two fea-
tures were screened out at the same time in the virtual survey.
This is not a special case in the commercial software used; rather,
it is likely an outcome of the prior distribution assumption.

All three histograms in Fig. 4 are closer to multimodal distribu-
tions than normal distributions. The distribution of heterogeneity
has to be specified when estimating hierarchical Bayesian models,
and a multivariate normal distribution is most commonly used.
The commercial software used in this study also adopts the multi-
variate normal distribution. However, when the true distribution
of heterogeneity is as close to a finite mixture of normal distribu-
tions as the noncompensatory choices, it is inappropriate to use a

Table 7 Membership probability of belonging to a group

Latent class

Number of respondent I II III IV V

43 99.88 0.00 0.00 0.12 0.00
44 0.99 98.68 0.00 0.00 0.33
40 0.00 0.01 99.99 0.00 0.00
48 0.00 0.00 0.00 99.96 0.04
25 0.00 1.67 0.00 0.01 98.31

Table 8 Attribute importance of latent class analysis

Segment TM Sunroof A3 A4 A5 A6 Price

I 70.5 3.5 4.6 3.1 5.3 13.0
II 56.4 2.0 1.1 4.0 4.0 2.8 29.7
III 82.9 0.3 1.0 3.0 1.7 2.0 9.1
IV 3.4 50.7 2.6 5.1 4.9 2.5 30.8
V 5.7 11.6 5.1 9.9 10.4 9.1 48.2

Table 9 Part-worth estimates for the HB-ML model

Attribute Level Posterior mean Attribute Level Posterior mean

TM AT1 9.57 A5 2 �0.69
AT2 13.04 3 �0.72

4 �0.09
Sunroof Yes 8.37

A6 2 0.56
A3 2 0.57 3 0.19

4 0.16
A4 2 0.64

3 0.53 Price $20,000 3.65
4 0.17 $19,000 5.69

$18,000 8.22

Table 10 Hit rate comparison between HB-MNP with conjunc-
tive rule and HB-ML models

Model Hit rate (%)

HB-MNP with conjunctive rule 69.19
HB-ML 72.75
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multivariate normal. Thus, a hierarchical Bayes model may over-
estimate the proportion of the part-worths near zero [41]. Explor-
ing appropriate prior distribution assumptions, or incorporating
prior knowledge, is a source of future work.

Attribute importance values listed in Table 12 are obtained
using the individual-level part-worths obtained from the HB-ML
estimation. As discussed in Sec. 4.1, the noncompensatory varia-
bles have to have at least 50% importance; group 1 in the HB-ML
model satisfies this condition. However, notice that groups 2, 3,
and 4 contain importance values lower than 50%. This implies
that the HB-ML model does not completely approximate a non-
compensatory choice.

Importance values below 50% suggest a switching of products
across the threshold of selection. For a respondent who screened
out MT in each choice task, Fig. 5 depicts the switching of a prod-
uct having an MT feature and the largest part-worths of each com-
pensatory attribute. Even though the respondent never selected the
MT feature in the virtual survey, some products having MT can
be selected in a market simulation. This is due to the absence of a
strict heuristic consideration rule in compensatory models. How-
ever, since product search problems only focus on the several top
products, the impact of this scenario may be minimal.

The results in Table 13 help explain why the absence of a strict
threshold may have minimal impact in optimization problems.
Hundred and sixty respondents from groups 1 to 4 performed non-
compensatory choices. Using the HB-ML part-worths, these
screening rules can be reproduced for 150 of the 160 respondents.
Further, the utility gaps between the best product and the switched
product are significantly large. The effectively zero odds ratio
values also suggest that the violated products likely have no have
significant effect on a product search.

4.4 Product Design Search. This section focuses on product
configuration differences when using the compensatory and non-
compensatory models in an optimization. Individual-level aggre-
gate estimates of the HB-ML model are used as the compensatory
model. In contrast, as explained in Sec. 2.2, using the aggregate
values of the conjunctive model is challenging because of the
probabilistic representation of cutoffs and corresponding part-
worth estimates. For this reason, 5000 draws were generated using
a MCMC process. To ensure independency between draws and to
manage the computational cost of this procedure, every tenth
draw was kept for use in the optimization, leading to 500 draws
per individual. All draws were equally weighted when evaluating
share of preference.

The pricing structure for each attribute is shown in Table 14. In
addition to this pricing structure, a base price of $18,000 is added.
A piecewise linear interpolation is used to calculate the price
attribute part-worth. The objective of the search is maximizing the
choice probability of the product configuration in a competitive
market, using Eqs. (2) and (6) for the compensatory and noncom-
pensatory models, respectively. Competitor products are defined
in Table 15.

The first scenario considered was finding the best product to
offer. This scenario does not necessarily require a search algo-
rithm because only 768 product configurations had to be eval-
uated. The second scenario considered was finding the optimal
configurations when offering two products, leading to a problem
size of 589,056 product combinations. This required a search
algorithm because one market simulation using the noncompensa-
tory model took approximately 15 s on a laptop running an Intel i7
2.20 GHz with 16 GB RAM. A genetic algorithm was used for
both model formulations because a GA works directly with
discontinuous choice probabilities and previous work has shown

Table 11 Zero-centered part-worth estimates of each segment
obtained using the HB-ML model

Transmission Sunroof

Latent class MT AT1 AT2 No Yes

I �12.7 5.6 7.1 �9.9 9.9
II �10.9 5.5 5.4 �0.2 0.2
III �11.7 �1.4 13.1 �0.5 0.5
IV �0.4 �0.1 0.5 �8.6 8.6
V 0.1 �0.5 0.5 1.1 �1.1

Fig. 4 Histogram of aggregate posteriors for transmission
attribute obtained using the HB-ML model

Table 12 Attribute importance of HB-ML model

Group TM Sunroof A3 A4 A5 A6 Price

1 67.9 2.8 3.7 6.1 4.9 14.5
2 41.2 7.1 6.0 7.2 8.8 9.0 20.6
3 43.7 8.3 5.2 8.2 9.6 8.6 16.4
4 11.5 42.2 5.6 6.5 7.3 6.9 20.0
5 14.8 11.8 8.0 10.7 13.6 13.6 27.6

Fig. 5 Conceptual diagram to show the absence of a strict
threshold in compensatory modeling of noncompensatory
choice
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the advantages of this technique in a product line optimization
[22,26]. The pool size was set at 200 and the stall generation limit
was set to 50.

Solutions to the two optimization scenarios are shown in
Tables 16 and 17, respectively. Investigating solution differences
is divided into two aspects—the inclusion of must-have features/
attributes and design error. Design error is quantified by evaluat-
ing the objective function using both the synthetic (true) preferen-
ces generated in Sec. 4.1 and the estimated preferences from the
model fits. SOPo indicates the share of preference used as an
objective function value. SOPt indicates the share of preference
evaluated in the synthetic (true) preferences. The design error
metric is defined as (SOPt of synthetic data— SOPt of estimated

data)/SOPt of synthetic data. For instance, the design error of
the compensatory model for the scenario 1 is obtained as
ð37:1� 35:9Þ=37:1 ¼ 3:2%: Notice that the gap, SOPt � SOPo,
does not directly provide an evaluation of a design solution
because the value can change by adjusting the scale parameter rb
and other settings associated with model estimation.

In the one product design scenario, the noncompensatory attrib-
utes (transmission and sunroof) are represented by the levels used
to form the consideration sets. The compensatory model product
configuration has three of the correct compensatory features,
while the noncompensatory model product configuration only has
one correct. These results imply that if there are strong noncom-
pensatory choices, the noncompensatory attributes can be found
regardless of model. In terms of design error, the compensatory
model performs better than the noncompensatory model.

Similar outcomes are observed in the two-product scenario.
The true data and the compensatory model use the same transmis-
sion and sunroof features, though there is discrepancy in some of
the compensatory attributes. Although the noncompensatory
model resulted in only AT2 for the transmission feature, the cru-
cial finding is that both models find solutions that would be
included in the consideration sets.

The predictive accuracy listed in Table 10 provides evidence
that supports why the compensatory model (HB-ML) resulted in
smaller design errors than the conjunctive model (HB-MNP with
conjunctive rule) in both problems. The slighter greater predictive
accuracy of the compensatory model implies that the compensa-
tory model better reflects the true preferences of the respondents.
However, this result is limited to the simulated data for this study
and additional research is needed to understand design problem
formulation influences this result.

For the compensatory attributes, there exist both commonality
and discrepancy in the optimal product configurations. To

Table 13 Part-worth comparison of the switched products

Predefined
group

No. of respondents
having switched products

Avg. utility of the
best producta

Avg. utility of the best product
among switched productsb

Threshold
ðVno�buyÞ

Odds
ratioc

2 4 16.3 1.5 1.0 ffi0
3 2 20.7 8.7 8.0 ffi0
4 4 22.5 4.0 1.8 ffi0

aVnc;consideration þ
P

maxðVc1;…;VclÞ.
bVnc;screen out þ

P
maxðVc1;…;VclÞ.

c exp Vnc;screen outþ
P

max Vc1 ;…;Vclð Þð Þ
exp Vnc;considerationþ

P
maxðVc1 ;…;VclÞð Þ.

Table 14 Pricing structure (in $)

TM Sunroof A3 A4 A5 A6

Level 1 0 0 0 0 0 0
Level 2 800 500 500 100 200 100
Level 3 1000 200 300 200
Level 4 300 400 300

Table 15 Attribute levels of competitor products in the market

Competitor TM Sunroof A3 A4 A5 A6 Price

Product 1 MT No 1 1 1 1 $18,000
Product 2 AT1 Yes 1 2 3 3 $19,900
Product 3 AT2 Yes 2 4 4 4 $21,000

Table 16 Optimal product configuration for each model (scenario 1)

Model TM Sunroof A3 A4 A5 A6 Price SOPo (%) SOPt (%) Design error (%)

True AT2 Yes 1 3 1 2 $20,100 37.1 37.1 —
Compensatory AT2 Yes 1 2 1 2 $20,300 52.4 35.9 3.2
Noncompensatory AT2 Yes 1 1 3 3 $20,350 41.3 29.2 21.3

Table 17 Optimal product configuration for each model (scenario 2)

Model TM Sunroof A3 A4 A5 A6 Price SOPo (%) SOPt (%) Design error (%)

True AT1 Yes 1 1 3 3 $19,850 54.2 54.2 —
AT2 Yes 1 2 1 2 $20,300

Compensatory AT1 Yes 2 2 1 3 $19,900 68.7 47.8 11.8
AT2 Yes 1 2 1 2 $20,300

Noncompensatory AT2 Yes 2 1 3 3 $20,550 61.8 45.6 15.9
AT2 Yes 1 4 2 4 $20,400
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investigate how many differences exist between the three solu-
tions, choice probabilities are tested at all attribute levels to assess
the sensitivity of the share of preference calculation. The intervals
between the maximum and minimum choice probabilities when
only one attribute changes its level are shown in Table 18.

The results in Table 18 show that, for both models, the intervals
between maximum and minimum choice probabilities are larger
than the true data. Also, the noncompensatory attributes have
significantly larger intervals than the compensatory attributes. Nor-
malized intervals of choice probability for each model are displayed
in Fig. 6. This result is analogous to attribute importance. As a gen-
eral result, the noncompensatory model tends to give more weight
to the noncompensatory attributes while underweighting the com-
pensatory attributes. The result for the compensatory model is less
structured, with variability across all attribute types.

In this study, the compensatory model is more accessible
because of the reduced computational burden and no requirement
for screening rules. Product configurations from both estimated
models found solutions very similar to the optimal solution when
the true preferences are used. When calculating design error, the
compensatory model outperformed the noncompensatory solution
in both the one- and two-product design scenario. To further sup-
port this finding, Sec. 5 explores a problem using choice data
from real respondents.

5 Case Study Using Real Choice Data Generated

by Human Respondents

5.1 Survey Design and Modeling. To explore solution differ-
ences when using choice data from an actual survey, a second case
study was conducted. Beyond the motivation listed in Sec. 3.2, a
study involving human responses was pursued to ensure that the
results in Sec. 4 were not an artifact associated with the generation
of the synthetic data. A discrete choice survey with 12 choice tasks
was completed by 205 respondents. For each question, a respondent
was faced with four MP3 player configurations and a “No-Buy”
option. Respondents were then asked to choose one product alterna-
tive they would be most likely to purchase. Each MP3 player was
composed of eight product attributes. Product attributes and their
levels are listed in Table 21 of the Appendix.

Once the survey data were collected, the HB-MNP with a con-
junctive rule was fit using R [38], and the HB-ML was fit using
Sawtooth Software’s CBC/HB module. For both models, 10,000
random draws were used for each respondent before averaging the
next 10,000 random draws to estimate the moments of the poste-
rior distributions. For the noncompensatory model, every 20th
draw was kept for use in the optimization to ensure draw inde-
pendency and to manage the computation expense. This resulted
in 500 draws per individual.

Table 22 in the Appendix shows the aggregate estimates of the
cutoff probability obtained using the conjunctive model. Conjunc-
tive screening rules were estimated at 55.2% and 75.7% for the
storage size and price attributes, respectively. They can be
regarded as incremental attributes whose higher levels are pre-
ferred. This trend is shown as large absolute part-worth values of
the compensatory model as shown in Table 23. In addition, this
leads to the relatively large attribute importance values in the
compensatory model, as listed in Table 24. This suggests that
even though the compensatory model does not have an ability to
capture noncompensatory choice behavior, biased preference in
the noncompensatory attributes is maintained.

5.2 Product Design Search. Individual-level aggregate esti-
mates of the HB-ML model are used for the compensatory model.
In contrast, simulations involving 500 draws were used for each
respondent in the noncompensatory model. Three competitor
products are defined. The objective of the search is to maximize
the choice probability of the optimized product configuration (or
line) in a competitive market, using Eqs. (2) and (6) for the com-
pensatory and noncompensatory models, respectively. The consid-
eration set generator used in this study assumes respondents focus
on only a small subset of product attributes in the noncompensa-
tory choice stage to simplify their choice decisions. Combinations
of conjunctive and disjunctive rules are assumed in the simulation.
The maximum number of subset conjunctive and disjunctive rules
is set as two and one. In set theory, the two subset conjunctive
rules and one disjunctive rule are expressed as ðC1 \ C2Þ [ D1,
where C and D indicate conjunctive and disjunctive rules, respec-
tively. Thus, 332 different noncompensatory choice scenarios
exist, which is obtained as ð8C2þ 8C1þ 8C0Þ � ð8C1þ 8C0Þ � 1.
By averaging the results of the 332 choice simulations, the mini-
mum likelihood (LC) that a product design is not screened out in
the consideration set verifier can be estimated using Eq. (7).

The first scenario was to find the best product to offer, leading to
393,216 possible product feature combinations. The second scenario
considered was finding the optimal configurations when offering
two products, leading to a problem size of about 1.54� 1011 product
combinations. A genetic algorithm was used for both problems. The
pool size was set as ten times ndv, where ndv indicates the number
of design variables and the stall generation limit was set to 100.

Solutions to the two optimization scenarios are shown in
Tables 19 and 20, respectively. The LC value was obtained by
evaluating the optimum design using the consideration set verifier
for the 332 scenarios. SOPC and SOPNC are used to show the
share of preference when evaluating a design using part-worths
data associated with the compensatory and noncompensatory
models, respectively. In addition to the optimal product configu-
rations from each model, the choice task data were mined to iden-
tify the design with the maximum LC value for comparative
purposes.

A noticeable result from both scenarios is that the likelihood
values, LC, are similar across all three cases—compensatory
model, noncompensatory model, and choice task mining. For the
single-product scenario, 59.3% is the maximum likelihood value
that can be achieved, and this number increases to 72.7% for the
two product search. It is also important to note that maximizing
LC using only choice task mining does not guarantee a high SOP
value because it is unable to model the lower phase (choose) of
the consider-then-choose process.

Table 18 Choice probability interval sensitivity study

Interval between max. and min. choice probabilities (%)

Data TM Sunroof A3 A4 A5 A6

True 19.2 9.5 0.6 3.4 5.3 7.2
Compensatory 36.6 22.2 1.4 6.6 16.4 9.1
Noncompensatory 36.7 18.2 1.8 4.3 7.9 9.7

Fig. 6 Interval comparison between the max. and min. choice
probabilities of each attribute
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To further explore the results presented in Tables 19 and 20, a
comparison of product price is appropriate because it is the
strongest noncompensatory attribute, as shown in Table 22. The
optimum product price in the single product search for both
models ($209 and $246) are similar to the price obtained when
maximizing LC ($192) after mining the discrete choice data. Also,
for the two product search shown in Table 20, one product is
around $200 and another is around $400. This supports the
hypothesis that solutions developed using compensatory models
find solutions similar to those generated when using noncompen-
satory models, and that these solutions will not be screened out by
consumers making noncompensatory choices.

The results in Table 20 also demonstrate that for a two-product
solution, the optimal product solutions are quite similar in configu-
ration. Differences in product configuration occur in attributes that
are among the least important (A3 and A6). These attributes also
pose a challenge for noncompensatory screening as the order in
which the attribute levels should be presented to ensure proper
screening is not easily apparent, nor does it have particular mean-
ing. Significantly, when the solution associated with the compensa-
tory model is evaluated using the noncompensatory draws, the
estimated share of preference is only a few percentage points less
than the solution obtained using the noncompensatory model. This
suggests that a compensatory model can be advantageous and use-
ful even if a product designer believes noncompensatory choices
have been made because of the challenges associated with noncom-
pensatory models discussed in Sec. 2.2. Without strict screening
rules, it is possible for a compensatory model to mimic the two-
stage choice process using large absolute part-worth values to pre-
vent product solutions with screened out product attributes.

6 Conclusions

The main purpose of this paper was to explore the suitability of
using compensatory models to mimic the consider-then-choose pro-
cess when trying to design an optimal product offering. This work is
motivated by the potential errors associated with assuming screening
rules, probabilistic representations of noncompensatory choices, and
discontinuous choice probability functions associated with existing
Bayesian-based noncompensatory models. It was hypothesized that
distinct segments would be captured where screening occurred, and
that large absolute part-worth values would be found in the
individual-level estimates of the HB-ML model.

To verify this hypothesis, this research first investigated seg-
mentation techniques of the two-stage choice process using latent
class analysis. Using latent class is based on the idea that noncom-
pensatory choices would cause a distinct differentiation of

population preference. The numerical results of latent class analy-
sis confirm this hypothesis. The distribution of preference hetero-
geneity is explored to compare the true preference and the
compensatory model at individual-level preference. The results of
the individual-level preference analysis show that the HB-ML
model can represent noncompensatory choices using large abso-
lute values in part-worths despite the absence of strict thresholds.
Lastly, implications of model choice between the two representa-
tions of the consider-then-choose process are discussed using the
results of the product design search problem. The results of the
product design search show interesting implications of model
form choice. Although there are several insignificant differences
between the two models in the market simulation, the compensa-
tory model has some significant advantages such as the small
design error and its relatively inexpensive computational burden.
In the analysis of the real choice data, results also confirm the suit-
ability of the compensatory model in product design search as its
optimum design has an acceptable level in the likelihood gap
associated with the proposed consideration set verifier.

A limitation of this work is that the attributes used to make
noncompensatory choices may not have the largest importance in
a latent class model when only a small number of respondents
make noncompensatory choices. However, this should not be a
concern when searching for an optimal solution as the outcome
reflects solutions capable of maximizing or minimizing an objec-
tive across all respondents. In this case, the small number of the
respondents performing noncompensatory choices would not have
a significant effect on the optimization problem. Further, a stand-
ard choice-based study was used. These findings should be
explored using more complex survey tools like adaptive choice
that refines the choice alternatives seen by a respondent as data
from the choice tasks are gathered. Finally, it should be noted that
the findings of this work cannot be generalized to all noncompen-
satory choices and all noncompensatory models that exist in the
literature. Rather, this study was focused on conjunctive screening
rules estimated using a Bayesian-based noncompensatory model.

Future work will focus on seven different challenges: (1) devel-
oping optimization techniques capable of using the compensatory
model of the two-stage choice process, (2) resolving the limitation
of assuming normally distributed priors, (3) exploring differences
between compensatory models when different noncompensatory
heuristics are used by respondents, (4) investigating the implica-
tions of the discrepancy between the true preference distribution
and the prior distribution assumption of Bayesian inference, (5)
exploring the effect of modeling other noncompensatory heuristic
rules with a compensatory model in a product design search, (6)
developing segmentation methods for noncompensatory models,

Table 19 Optimal product configuration for each model (scenario 1)

Data A1 A2 A3 A4 A5 A6 A7 Price SOPC (%) SOPNC (%) LC (%)

Aggregate part-worths (compensatory model) 5 8 3 3 2 1 4 $209 33.8 25.5 49.4
Draws from noncompensatory model 8 8 3 4 2 3 4 $246 20.8 29.5 51.9
Choice task mining (max. LC) 3 5 3 3 2 6 1 $192 4.0 17.8 59.3

Table 20 Optimal product configuration for each model (scenario 2)

Data A1 A2 A3 A4 A5 A6 A7 Price SOPC (%) SOPNC (%) LC (%)

Aggregate part-worths (compensatory model) 5 8 3 3 2 1 4 $209 50.3 42.0 65.7
8 5 3 4 5 8 3 $396

Draws from noncompensatory model 5 8 2 4 2 3 4 $194 32.5 45.9 66.7
8 5 3 5 5 6 3 $396

Choice task mining (max. LC) 3 5 3 3 2 7 1 $192 6.5 24.7 72.7
6 6 4 6 6 6 4 $413
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and (7) generalizing the observation in this paper by quantifying
asymptotic performance of each model.
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Subscripts

c ¼ compensatory
h ¼ number of compensatory attributes

i ¼ choice alternative
j ¼ choice alternatives in a choice scenario
k ¼ choice scenario
l ¼ attribute level

m ¼ attribute
n ¼ respondents

nc ¼ noncompensatory

Appendix: MP3 Survey Data and Modeling Result

Table 22 Threshold estimates for the posterior means of the conjunctive model (MP3 data)

Attribute
Level

(recorded value)
Possible
cutoff

Probability of
each cutoff (%) Attribute

Level
(recorded value)

Possible
cutoff

Probability of
each cutoff (%)

A1 1 (0) �0.5 65.2 A5 1 (0) �0.5 44.8
2 (1) 0.5 12.7 2 (1) 0.5 27.5
3 (2) 1.5 4.4 3 (2) 1.5 8.1
4 (3) 2.5 3.7 4 (3) 2.5 6.0
5 (4) 3.5 2.7 5 (4) 3.5 3.9
6 (5) 4.5 3.6 6 (5) 4.5 2.6
7 (6) 5.5 2.8 7 (6) 5.5 2.4
8 (7) 6.5 2.4 8 (7) 6.5 2.4

7.5 2.4 7.5 2.4

A2 1 (0) �0.5 56.2 A6 1 (0) �0.5 73.3
2 (1) 0.5 20.7 2 (1) 0.5 7.0
3 (2) 1.5 5.6 3 (2) 1.5 3.5
4 (3) 2.5 4.1 4 (3) 2.5 3.6
5 (4) 3.5 3.3 5 (4) 3.5 3.0
6 (5) 4.5 2.6 6 (5) 4.5 2.4
7 (6) 5.5 2.4 7 (6) 5.5 2.4
8 (7) 6.5 2.7 8 (7) 6.5 2.4

7.5 2.4 7.5 2.5

A3 1 (0) �0.5 83.8 A7 1 (0) �0.5 87.6
2 (1) 0.5 5.5 2 (1) 0.5 4.0
3 (2) 1.5 5.4 3 (2) 1.5 3.1
4 (3) 2.5 2.6 4 (3) 2.5 2.7

3.5 2.7 3.5 2.7

A4 1 (0) �0.5 64.0 Price $699 (0) �0.5 24.3
2 (1) 0.5 15.6 $599 (1) 0.5 13.7
3 (2) 1.5 9.5 $499 (2) 1.5 12.4
4 (3) 2.5 3.4 $399 (3) 2.5 14.6
5 (4) 3.5 2.4 $299 (4) 3.5 10.8
6 (5) 4.5 2.6 $199 (5) 4.5 12.4

5.5 2.5 $99 (6) 5.5 6.2
$49 (7) 6.5 3.1

7.5 2.4

Table 21 MP3 attributes and levels

Attributes

A1 A2 A3 A4 A5 A6 A7

Level
Photo/video/

camera
Web/app/

ped Input
Screen

size
Storage

size
Background

color
Background

overlay Price

1 None None Dial 1.5 in. diag. 2 GB Black No pattern/graphic overlay $699
2 Photo only Web only Touch-pad 2.5 in. diag. 16 GB White Custom pattern overlay $599
3 Video only App only Touch-screen 3.5 in. diag. 32 GB Silver Custom graphic overlay $499
4 Photo and video

only
Ped only Buttons 4.5 in. diag. 64 GB Red Custom pattern and

graphic overlay
$399

5 Photo and lo-res
camera

Web and app only 5.5 in. diag. 160 GB Orange $299

6 Photo and hi-res
camera

App and ped only 6.5 in. diag. 240 GB Green $199

7 Photo, video and
lo-res camera

Web and ped only 500 GB Blue $99

8 Photo, video and
hi-res camera

Web, app, and ped 750 GB Custom $49
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