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Abstract System evolvability is vital to the longevity of
large-scale complex engineered systems. The need for
evolvability in complex systems is a result of their long
service lives, rapid advances to their integrated technolo-
gies, unforeseen operating conditions, and emerging system
requirements. Building excess capability into complex sys-
tems can improve their ability to evolve while in service.
However, excess capability increases initial build cost and
operating cost, which is compounded across the service
life of the system. Excess capability that is eventually used
adds benefit by allowing for in-service evolution to meet
emerging system requirements. Therefore, there is a trade-
off between the cost of excess capability initially built into
the system and the benefit that is added to the system by
enabling future evolution. This paper introduces a process
for optimizing the amount of excess capability in a complex
system. This process results in a set of evolvable systems
without excessive cost. We demonstrate how this process
can be used to select the amount of excess capability that
should be included in a military ground vehicle.
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Nomenclature

Do Capabilities to meet current requirements
Df Capabilities to meet future requirements
X Excess capability allotted for evolution
bi Benefit of excess capability for the i-th future

requirement
ci Cost of excess capability for the i-th future

requirement
B Total benefit that is added to the system
C Total cost that is added to the system
V Total value that is added to the system
E Measure of system evolvability
Y Years of expected service life
n Number of future system requirements

1 Introduction

Large-scale complex engineered systems (hereafter referred
to as complex systems) are being developed with increas-
ing frequency (Ferguson et al. 2007). Examples of complex
systems are found in aerospace, naval, and power gener-
ation systems. They are characterized by complex inter-
actions between sub-systems, long service lives, and large
development and production costs (Bartolomei et al. 2012;
English et al. 2001). The complex systems design process is
largely cooperative across multiple disciplines (Lewis and
Collopy 2012). Often, the associated decision-making body
is so large that design and production decisions are delayed
(Bloebaum and McGowan 2012), slowing completion and
increasing total cost (Simpson and Martins 2011).

The cost and time associated with complex systems
development is in part due to an uncertainty in future sys-
tem requirements. Their long service lives often necessitate
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changes to operating conditions and requirements that are
unforeseeable during design (Madni and Epstein 2011). The
impact of these changes must be accounted for when mak-
ing design decisions. Bonissone et al. note that with new
complex systems there is often a lack of long-term data
to corroborate predictions of future performance or eval-
uate the system’s ability to handle emerging requirements
(Bonissone et al. 2005). The effects of a single change
can propagate throughout the entire system (Clarkson et al.
2004), making it difficult to predict the impact of emerging
requirements on the system (VanBeek and Tomiyama 2012).

Evolvable systems have been a topic of increasing inter-
est as a solution to this problem (Siddiqi and deWeck 2008).
System evolvability is a measure of how well a system is
able to adapt to meet new system requirements (Ferguson
and Lewis 2006). Complex systems that are able to evolve to
meet new system requirements have more long-term value
than those that are not (Bloebaum and McGowan 2012).
Quantifiable metrics are necessary for optimizing complex
systems for evolvability (Simpson and Martins 2011). Some
metrics have been proposed such as system viability (Sand-
born et al. 2003) and interface dependency (Tilstra et al.
2009). Modular design has also been studied extensively
as a means for improving flexibility and evolvability. Sosa
et al. suggest a metric that defines modularity based on
connectivity of components (Sosa et al. 2007).

Excess capability often accompanies modular designs
(Ulrich 1995). The amount of excess capability in a system
can serve as a quantifiable metric for system evolvability.
Tackett et al. suggest that intentionally built-in excess capa-
bility increases the evolvability of complex systems (Tackett
et al. 2014). Allen et al. show that this is true as long as
the capability is of the appropriate type, quantity, form, and
location required to meet a particular future need (Allen
et al. 2014). Despite the benefits of excess capability, excess
also increases the production and operating costs of the
system. This trade-off between cost and benefit of excess
capability must be accounted for when evaluating system
designs.

Due to the enormity of complex systems, selecting the
amount of excess capability to be included can be more eas-
ily managed through optimization. While the most effective
optimization algorithm is generally problem specific, this
paper will use a genetic algorithm to explore the design
space. Genetic algorithms, though computationally expen-
sive, are beneficial in that they are able to handle discontinu-
ous objective functions commonly encountered in complex
systems (Marler and Arora 2004).

This paper is built on the basic theories developed by
Tackett et al. (2014), but takes an important step beyond
their work. We present a framework for optimizing the
amount of excess capability that should be included in a
system based on the value that is added by the excess for

future evolution. The value of evolvability is introduced as
a more useful measure to consider than evolvability when
deciding howmuch excess capability to design into a system
up front.

The analysis in this paper addresses both determinis-
tic and non-deterministic conditions. To facilitate under-
standing, we first present the theory and example assum-
ing deterministic knowledge. This is done in Sections 2
and 3. This theory is then expanded to the more com-
plex scenario accounting for non-deterministic conditions.
Sections 4 and 5 present the non-deterministic theory and
example, respectively. For both the deterministic and the
non-deterministic example, the optimization of a simplified
military ground vehicle is considered.

2 Theory development (deterministic)

There is a trade-off between the costs of excess capabil-
ity initially built into complex systems and the benefits of
excess capability used to evolve the system. This trade-off
can be optimized using the framework set out in Fig. 1. As
shown, the framework breaks the system design into current
requirements and potential future requirements. The bene-
fit and cost for each future requirement are used to compute
the total value of adding excess capability to different sys-
tem functions. A process for formulating the benefit and
cost relationships is given in Sections 2.3 and 2.4. An opti-
mization routine is then used to select the optimal amount
of excess capability resulting in a set of evolvable designs
without excessive cost.

2.1 Future design requirements

Anticipating the emergence of potential future requirements
is one of the main challenges of designing complex systems
(Lewis and Mattson 2013). However, designers can iden-
tify potentially impactful requirements changes in complex
systems using change modes and effects analysis (CMEA)
(Keese et al. 2006). CMEA assists designers in evaluating
the causes and effects of potential requirements changes.
CMEA is most effective when combined with existing
knowledge about trends and system-specific information.
Unfortunately this information is often limited for complex
systems. For the purposes of our analysis, we will assume
that the most impactful future requirements for a com-
plex system can be predicted by informed designers using
CMEA or similar methods. The reliance on this assumption
alone is insufficient; the non-deterministic aspects of future
requirements must also be considered. To that end, this
paper presents an approach to handle uncertainties based on
estimates of the probability of occurrence of future events
(see Section 4).
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Once future requirements are identified, they can be bro-
ken down into a description of the capabilities needed to
fulfill each requirement. These capabilities (Df ) are inputs
into our optimization framework, as shown in Fig. 1.

The capabilities needed to fulfill current requirements
(Do) are also inputs into the framework. As described
below, the currently required capabilities will act as a lower
bound on the system design.

2.2 Excess capability

In order for systems to evolve, they must have the capabil-
ity to support future requirements. In the case that future
requirements are more demanding of the system than cur-
rent requirements, excess capability is designed into the
system initially to later be used in an evolved state. The
amount of excess capability (X) is dictated by the current
and future design requirements according to:

X = Df − Do (1)

where Df is the capability required to meet predicted future
needs and Do is the capability required to meet currently
known needs. The capabilities identified in the previous
section feed into this step (see Fig. 1).

The amount of capability that can be allotted for a future
requirement (Df ) is not always a constant. Often there is
a capability range that could satisfy the future requirement
with varying benefit. Accordingly, excess capability allotted
for a given potential requirement has a specific beneficial
range. For the i-th requirement, this range is dictated by:

Xi min ≤ Xi ≤ Xi max (2)

where Xi min is the minimum amount of excess capability
that can be allotted to fulfill the i-th new requirement, and
Xi max is the maximum beneficial amount of excess capa-
bility that can be allotted for the i-th new requirement. The
variable Xi falls in the range of values that the excess capa-
bility is allowed to occupy in order to fulfill the i-th new

requirement and add benefit to the system. Excess capability
allotted below Xi min has a benefit of zero and no additional
benefit above Xi max, as illustrated in Fig. 2.

An example of the range of excess capability is found
when considering how much excess to add for a future heat-
ing system in the cargo bay of an aircraft. There are multiple
heaters that could be installed to meet this new requirement,
each of which have different spatial and electrical demands.
To satisfy this requirement, excess space and electrical capa-
bility could be built into the cargo bay. Excess power or
space included less than the smallest available heater adds
no benefit to the system because it does not allow for the
addition of a heater. Any power or space included above the
amount required by the largest candidate heater would add
no further value towards meeting this need. Between these
two values, excess capability results in a varying level of
benefit.

Some components can operate across an entire range of
performance in order to satisfy future needs. Such variable-
performance components are able to dynamically adjust
their parameters between Xi min and Xi max. For example,
some military-contracted vehicle manufacturers have begun
to use damping systems filled with magneto-rheological
fluid (Tao 2011). These systems can actively change the
damping coefficient of the suspension by application of
a magnetic field. Used in parallel with external sensors,
such damping systems are able to satisfy a range of damp-
ing needs to accommodate terrain changes. Such variable-
performance components have built-in excess which allows
them to evolve as requirements change.

2.3 Benefit as a function of excess

The benefits of excess capability are a result of having suf-
ficient capability to support a future evolution, as shown in
Fig. 2.

The benefit function is specific to the requirement it
describes. Generally, it represents the monetary amount
that will be saved by adding the excess capability into the

Fig. 1 Framework for optimizing the amount of excess capability in
a system (Do = capability required for current requirement, Df =
capability required for future requirement,X = excess capability, bi =

benefit of excess capability for the i-th requirement, c = cost of excess
capability for the i-th requirement, B = total benefit, C = total cost,
V = total value, and X∗ = optimal amount of excess capability)
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system initially, instead of redesigning the system when the
new requirements take effect. However, the benefit can also
include the economic impact from any emotional or social
effects of being able to evolve to meet the new requirement.

Tackett et al. (2014) suggest steps for developing the ben-
efit functions based on the minimum and maximum range of
excess. Due to the time value of money, the benefit is depen-
dent on when the requirement emerges during the system’s
service life. This effect is described further in Section 2.5.

The total benefit of excess capability can be evaluated by
summing the individual benefits gained from all n potential
requirements, according to

B =
n∑

i=1

bi(Xi) (3)

As shown in Fig. 1, the total benefit is calculated for each
iteration of the optimization, depending on the amount of
excess (Xi) allotted.

2.4 Cost as a function of excess

In their calculation of evolvability, Tackett et al. (2014)
impose a constraint that requires the benefits of evolvabil-
ity to be greater than or equal to zero. This implies that
adding more excess capability can never cause evolvability
to be negative. Although more excess capability may not
decrease evolvability, at some point it may have a net neg-
ative impact on the system’s value, despite any benefits of
being able to evolve. We therefore introduce a new variable
(ci) to account for the cost of excess capability with respect
to the i-th future requirement. The cost of excess capabil-
ity is the sum of the initial and recurring costs of the added
excess capability, and can be evaluated by

ci = cio(Xi) + cir (Xi, Y ) (4)

Fig. 2 Basic illustration of benefit as a function of excess capability

where cio is the initial development and production cost of
the added excess capability, and cir is the recurring operat-
ing cost of maintaining and supporting the excess capability
across the expected service life (Y ) of the system. The recur-
ring costs of excess become increasingly impactful with
increased expected service life. However, the change in the
initial costs of excess capability can decrease as more excess
is added. This is the case where the initial production cost of
adding Xi min is significant (e.g. due to tooling), but where
adding slightly more excess above Xi min results in only a
small increase in the initial production cost. This effect is
illustrated in Fig. 3.

The total cost of excess capability can be evaluated by
summing the individual costs of all excess added, according
to

C =
n∑

i=1

ci(Xi, Y ) =
n∑

i=1

(cio(Xi) + cir (Xi, Y )) (5)

The total cost (C) is thus the dollar amount incurred by
adding excess capability initially and maintaining it before
and after it is utilized. Like the total benefit, the total cost is
calculated for each iteration of the optimization, as shown
in Fig. 1.

2.5 Total value of excess capability

It is important for designers to be able to evaluate whether
adding excess capability into a system will be worthwhile
across the lifespan of the system. This can be accomplished
by computing the difference between the benefits of excess
capability and its associated costs, as in

V = B − C (6)

We will refer to this difference as the value (V ) of the excess
capability associated with allotting excess for all i potential
requirements.

Fig. 3 Basic illustration of cost as a function of excess capability



Optimization of excess system capability for increased evolvability 1281

Even a small amount of excess can increase the pro-
duction and operating costs of the system. However, the
benefits of excess capability are not realized until there is
sufficient excess to enable future evolutions. Therefore, the
value that is added by excess is typically negative for excess
added below Xi min. For clarification, these characteristics
of the cost-benefit and value-excess curves are illustrated in
Fig. 4.

Due to the typically long service life of complex systems,
it is important to account for the effect of time on the value
of excess capability. Increased service life means that the
costs of excess must be carried for a longer duration. It also
means that the benefits of excess capability are more likely
to be realized and may have a greater impact. In order to
account for part of this effect, the net present value of all
cash flows can be computed for a given service life (Cardin
et al. 2007). The net present value for a series of m cash
flows can be calculated by

NPV =
m∑

i=1

FVi

(1 − r)t
(7)

where FV is the future value of the cash flow, r is the rate
of inflation or interest, and t is the time until the cash flow
occurs.

Fig. 4 Illustration of how the benefits of excess can overcome the
costs of excess

Including the net present value into our cost and benefit
calculations results in a shift of the value curve from Fig. 4,
dependent on the service life and cost and benefit func-
tions specified by the designers. This shift is illustrated in
Fig. 5.

2.6 Optimization strategy

The optimization seeks to maximize the benefits (B) of
excess capability, while minimizing any associated costs
(C). The evolvability of each solution is also calculated
for comparison. Evolvability, as quantified by Tackett et al.
(2014), can be measured based on the amount of excess
capability in the system, according to

E =
n∑

i=1

[∫ Xi

Xi min

giXidXi

]
(8)

This equation is based on Hooke’s law for the potential
energy stored in a spring. The analogous relationship is that
evolvability is stored in a system by the inclusion of excess
capability. The gain (gi) in (8) allows designers to weigh the
significance of including a particular type of excess capa-
bility. In the current study, the evolvability is normalized
between the minimum and maximum possible evolvability
score, eliminating the gain and producing a unit-less number

Fig. 5 Illustration of shifting value curve due to increasing service life
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between zero and one. This normalization allows designers
to quickly evaluate the amount of excess that is contributing
to the system’s value.

In addition to this, most complex systems have their own
problem-specific optimization objectives. The value func-
tions developed in this paper are combined with any other
critical performance objectives using the maximin fitness
function. This function is often used in genetic algorithms
to obtain a diverse set of non-dominated designs (Balling
2003). Constraints on the objectives should include min-
imum and maximum parameter values, as described in
Section 2.2. Including the optimal amount of excess capabil-
ity into the initial design allows the system to be evolvable
within the bounds of profitability and functionality.

3 Example (deterministic): military ground
vehicles

The described framework can be applied to the design of
military ground vehicles (Fig. 6). In 2005, the US Marine
Corps submitted requests for Mine Resistant Ambush
Protected (MRAP) vehicles to replace their insufficiently
protected fleet of High-Mobility Multipurpose Wheeled
Vehicles (HMMWV) (Lamb et al. 2009). The request was
spurred by an increase in improvised explosive devices
(IEDs) – a new threat that the flat-bottomed, low-clearance
HMMWV is not designed to address. However, despite
urgent and repeated requests for MRAP replacements, it was
several years before substantial shipments of MRAP vehi-
cles made it to U.S. troops. Weiner (2010) cites evidence
that the delay was caused by an inability to reconcile cur-
rent needs for greater IED protection with predicted future
needs for lighter, more maneuverable vehicles. Neither the
HMMWV nor the MRAP were capable of being evolved to
meet all potential requirements.

Ideally, military ground vehicles should meet a broad
range of emerging needs. However, many of these needs

conflict with one another. For example, vehicle stability, top
speed, and cargo capacity are all diminished by the addition
of after-market armor added to increase protection. Even the
benefits of additional armor are eventually countered by an
increase in fuel consumption, and thus fuel convoy casual-
ties (Hoffenson et al. 2011). Further, a given mission may
elicit any combination of performance requirements.

The prevailing design approach for military ground vehi-
cles has been to create several variations capable of per-
forming well on a few limited mission types. This has
led to delays and costly redesigns (Bloebaum et al. 2012).
However, an optimal design can be prepared by identifying
potential future requirements and adding excess capability
accordingly.

By following the steps described in Section 2, we are able
to select from a Pareto optimal set of military ground vehicle
designs that are able to evolve to meet the predicted future
requirements.

3.1 Simplified vehicle model

Creating a simplified model of our complex system will
assist in our analysis. Our model of a military ground vehi-
cle is reduced to only consider a few areas of potential
excess capability. The design variables of interest in this
study are excess height (XH ), excess width (XW ), excess
length (XL), excess payload (XS), and excess power (XP ).
The excess height, width, and length are used to compute
the excess cargo volume of the system (XV ). Accordingly,
the construction of the vehicle is simplified to the diagram
shown in Fig. 7.

For this example, the optimization routine is allowed to
create solutions within a defined range of excess volume,
excess payload, and excess power. The minimum and maxi-
mum allowable values for each design variable are given in
Table 1. Note that each area of excess refers to the area in
the back of the vehicle (shown by the dashed box in Fig. 7).
However, the width of the vehicle (W ) and the width of the

Fig. 6 Two current military ground vehicle options and their associated capabilities (from www.amgeneral.com, www.defense-update.com, www.
militaryfactory.com, www.navistardefense.com)

www.amgeneral.com
www.defense-update.com
www.militaryfactory.com
www.militaryfactory.com
www.navistardefense.com


Optimization of excess system capability for increased evolvability 1283

excess volume (XW ) are equivalent. The linear dimensions
of the vehicle are not allowed to go to zero due to functional
geometric constraints on the vehicle (see Fig. 7).

3.2 Future evolution requirements and associated excess
capability

There are many new requirements that could arise across
the lifespan of a military ground vehicle. For the purposes
of this analysis, we assume that four such requirements
are identified as being probable and impactful by a CMEA
study. These future system requirements are listed in Table 2
with their accompanying types of required excess. Note that
the example provided later in Section 5 includes probabilis-
tic estimates regarding these future requirements.

The first predicted evolution allows the vehicle to
become an armored transport vehicle capable of support-
ing an added armor kit and passengers. The required armor
thickness is set to 50 mm, based loosely on the work of
Hoffenson et al. (2011) and Yap (2012). In order for excess
capability to benefit this evolution, there must be enough
volume, payload capacity, and power to support the addi-
tion of armor and at least one individual. Benefit increases
as a step function with the number of individuals that can be
transported (see Table 3).

Fig. 7 Simplified model of excess volume (XV ), excess payload (XS )
and excess power (XP ) in a military ground vehicle

The second predicted evolution allows the vehicle to act
as a telecommunications post for military operations. The
vehicle must be able to power and support any equipment
used for this purpose. Unlike the piece-wise step function
used for modeling the benefit for transporting individuals,
the benefit for this evolution has a linear growth begin-
ning at the smallest amount of excess that can be allotted.
This is to show that the vehicle can always make use of
more excess capability to add more telecommunications
equipment.

The third predicted evolution allows the vehicle to launch
UAVs remotely. This evolution requires a minimum excess
length of 3 meters, a minimum excess width of 2.5 meters,
and a minimum excess payload of 100 kilograms. If the
excess in the system is at least this amount, the full benefit
of this evolution is realized. Otherwise, the system receives
zero benefit with respect to this evolution.

The last predicted evolution allows the vehicle to support
currently unknownmedical-related technology that could be
developed over the service life of the vehicle. The amount
of excess required for such a need is approximated based on
past technology trends. The benefit is determined by a dis-
tribution about the predicted need. As the excess capability
in the vehicle approaches the predicted amount, the benefit
grows exponentially.

3.3 Benefits and costs of excess

The benefit of excess is based on not needing to redesign
for each future state described in Table 2. For the current
analysis, we assume that the benefit of excess can be deter-
mined by designers who have been embedded in a particular
industry for many years (either heuristically or based on
known data points for similar systems and components). In
our analysis, the benefits associated with each evolution are
chosen according to Table 3.

The cost of excess is based on the actual amount of excess
capability designed into the system. The costs of excess
capability for the current analysis are given in Table 4.

Table 1 Minimum and maximum bounds on each type of excess
capability

Type of excess Xmin Xmax

Excess length (XL) 1.00 m 4.00 m

Excess width (XW ) 2.00 m 4.00 m

Excess height (XH ) 1.25 m 2.50 m

Excess payload (XS ) 0 kg 3000 kg

Excess power (XP ) 0 kW 400 kW
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Table 2 Potential future states to which the system may evolve (vari-
ables: n = quantity, V = volume, m = mass, ρ = density, A =
area, t = armor thickness, P = power; subscripts: p = people, a =

armor, te = telecommunications equipment, u = UAV, le = launch
equipment, md = medical devices)

Potential evolution Excess volume Excess payload Excess power

Armored transport vehicle npVp npmp + ρaApta Pp + Pa

Telecom vehicle Vte mte Pte

UAV launch vehicle Vu + Vle mu + mle Pu + Ple

New medical tech vehicle Vmd mmd Pmd

3.4 Deterministic optimization formulation

For clarification and comparison, we lay out the gen-
eral parameters used in our genetic algorithm in Table 5.
The first generation is randomly generated. Crossover is
achieved using a standard blending function (Engelbrecht
2007).

The optimization seeks to maximize the benefits (B)
added by included excess capability, while minimizing any
associated costs (C). These objectives are aggregated using
the maximin fitness function, which has been suggested as
a means of creating a well-distributed Pareto set (Balling
2003). Thus, the formulation of the optimization problem is
given as

minimize
X

maximin(−B(X), C(X))

subject to 1.00 m ≤ XL ≤ 4.00 m
2.00 m ≤ XW ≤ 4.00 m
1.25 m ≤ XH ≤ 2.50 m
0.00 kg ≤ XS ≤ 3000.00 kg
0.00 kW ≤ XP ≤ 400.00 kW
0.60 ≤ SSF

(9)

where X = {XL, XW, XH , XS, XP }. The minimum and
maximum bounds for each type of excess capability (see
Table 1) form the primary inequality constraints. A final

Table 3 Benefit of excess for each of the 4 potential evolutions in the
military ground vehicle example

Benefit of excess (bi )

b1 = $30, 000.00/person + armor

b2 = $50, 000.00/full support

b3 = $10, 000.00/UAV

b4 = $100, 000.00/approximate capability

inequality constraint ensures that the static stability factor
(SSF) remains above 0.60 as defined by (10).

SSF = XW

2(XH + 1)
(10)

The static stability factor is a simple predictor of a vehicle’s
propensity to roll (Walz 2005).

The described model is optimized following the formu-
lation given by (9). The net present value of cash flows is
calculated based on a set 5 % interest rate. Calculations are
made based on a service life of 20 years. For these param-
eters, the optimal set of designs is found to be the set of
solutions described by the cost-benefit Pareto frontier in
Fig. 8. The value-evolvability curve is also shown for each
point along the Pareto frontier.

3.5 Final design selection based on deterministic
evaluation

We recognize that optimization techniques are meant to
inform the designer, not to make the decisions for them
(Pandey and Mourelatos 2014). Now that an optimal set
of solutions has been generated, it can be used to make
decisions regarding the trade-offs between competing objectives
(Frischknecht et al. 2011). Selecting a final design can
be accomplished by evaluating the optimal solution set
based on any factors of interest to the stakeholders. In the

Table 4 Costs for each excess capability in the military ground
vehicle example

Initial cost of excess (cio) Recurring cost of excess (cir )

cV i = $100.00/m3 cV r = $0.40/m3/year

cSi = $7.00/kg cSr = $0.02/kg/year

cP i = $50.00/kW cP r = $1.00/kW/year
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Table 5 Genetic algorithm parameters and methods

Population size 500

Tournament size 50

Mutation rate 0.15

Generations 20

current analysis, one important evaluation criterion is the
budget that will be allocated initially toward improving sys-
tem longevity or evolvability. This budget is the maximum
approved cost of all excess capability built into the system.
Understanding the allowable budget will assist the design
team in determining how much (if any) excess capability
should be built into the system to support future evolution.

For example, if the expected service life of the system is
20 years, and a budget of $40,000 is allocated for evolvabil-
ity, then the red starred point shown in Fig. 9 is the optimal
configuration.

This same process can be used for any budget or criteria
that is measurable against the parameters of the optimiza-
tion. Table 6 outlines the highest value configuration for

three different budget constraints, based on a 20 year service
life.

According to Table 6, the optimal amount of excess
length, width, and height are the same for each budget level
shown. However, there is a significant difference in the
optimal amount of excess payload capacity and power iden-
tified for each budget level. This suggests that adding excess
payload and power in the range shown will provide a high
return on investment.

The total value added by excess capability for each of
these budget level solutions is positive. From Fig. 9 it can
be seen that an initial budget of around $35,000 is required
to make excess capability profitable for this system. In
short, if the stakeholders are not willing to invest this much
into making the system evolvable up front, they should not
design excess into the system.

If we assume that the stakeholders have allocated an ini-
tial budget of $50,000 to be spent on improving system
evolvability, we can extract the amount of excess that should
be designed into the system. From Table 6 we find that the
system that will yield the highest value for this budget, for a
20 year service life, is the system shown in Fig. 10.

Fig. 8 Preliminary generations and final solution set for military ground vehicle with a 20 year service life
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Fig. 9 Optimal solution for a military ground vehicle with a 20 year service life and a $40,000 budget constraint

The solutions recorded above are based on an expected
service life of 20 years. As described in Section 2.5, the
value of excess capability is a function of expected service
life, and the value of a given quantity of excess capability
was proposed to be higher for systems with a longer
expected service life. To illustrate this, the cost-benefit and
value-evolvability curves are plotted for 15 different ser-
vice life expectations in Fig. 11. It is shown that the system
must have a service life of at least 14 years in order for any
amount of excess capability to be valuable.

General comments summarizing what is learned from
both the deterministic and non-deterministic evaluation of
the ground vehicle are provided in Section 6.

4 Theory development (non-deterministic)

In the previous section, we presented a deterministic study
demonstrating how the value of excess capability can be
optimized with respect to evolvability. However, if not
accounted for, uncertainty in future system requirements
and parameters can result in an inaccurate representation
of the design space and thus mislead the decision makers.
The next two sections of the paper begin to explore this by

Table 6 Highest value configuration for 3 different budget constraints

$40,000 Budget $50,000 Budget $60,000 Budget

XL 3.98 m 3.97 m 3.97 m

XW 3.91 m 3.90 m 3.90 m

XH 2.22 m 2.24 m 2.24 m

XS 1,999 kg 2,786 kg 2,946 kg

XP 242.53 kW 288.93 kW 333.60 kW

Cost $39,870 $49,872 $54,887

Benefit $56,150 $80,238 $91,702

Value $16,280 $30,366 $36,814

Evolv. 0.52 0.71 0.81

including uncertainty in the optimization process. We show
that accounting for uncertainty can provide a more real-
istic solution for the optimal amount of excess capability
than a deterministic optimization approach, particularly at
the extremities of the design space. To demonstrate how we
have done this, we revisit the design of a military ground
vehicle.

The non-deterministic theory presented here is built on
the premise that uncertainty in model parameters can be
propagated through the system model and minimized in the
optimization formulation (Ayyub and Klir 2006; Zhou et al.
2012; Parkinson et al. 1993). In Sections 4.1 through 4.5, we
explore the effects of uncertainty in the following parame-
ters and objectives: excess capability, probability of future
events, benefit and cost of excess capability, net present

Fig. 10 Simple representation of the final design for a military ground
vehicle with a 20 year service life and a $50,000 budget constraint
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value of cash flows, and system evolvability. While there are
multiple ways (some more effective than others) to repre-
sent uncertain parameters, and propagate them through the
system model, we have presented the simplest of ways here
so as to briefly and straightforwardly illustrate the effects of
uncertainty on system evolvability.

4.1 Uncertainty in model parameters

The uncertainty associated with the physical parameters of
the system is aleatory, meaning it is caused by random
variation. The amount of excess capability in the system
is affected by this type of uncertainty. Because the upper
and lower limit for each capability form constraints in our
optimization routine, the uncertainty in these parameters
must be propagated through to the constraints. Accordingly,
the range of excess capability defining the design space is
limited to

(Xi min + kσi) ≤ Xi ≤ (Xi max − kσi) (11)

where σi is the standard deviation ofXi , and k is the number
of standard deviations within which solutions are considered
feasible.

4.2 Uncertainty in future requirements

The uncertainty associated with future requirements is epis-
temic, meaning it results from a lack of information. How-
ever, historical knowledge of past and current requirements
can be used to help predict future requirements with some
degree of confidence (Arendt et al. 2012). Other methods,
such as change modes and effects analysis (CMEA), can be
used to evaluate potential requirements and their likelihood
of occurrence (Keese et al. 2006). For the simple analysis
presented in this section, we assume that it is possible for
expert designers to assign each requirement a probability of
occurrence within a certain life span, as well as a qualifying
standard deviation for each probability. These assumptions
are supported by and are in line with similar studies from
the related literature (Greitzer and Ferryman 2001).

Often the probability that a future evolution will be
required can be modeled with a normal cumulative distribu-
tion function with a predicted mean and standard deviation,
as in Fig. 12. The example distribution shown in this figure
has a predicted mean of 15 years before emergence of the
future requirement, with a standard deviation of 4 years.

Figure 12 demonstrates how systems with longer
expected service lives can benefit from excess capability
more than those with short service lives. The effect of

Fig. 11 Minimum service life to create a net positive value of excess capability for the military ground vehicle example



1288 J. D. Watson et al.

Fig. 12 Example cumulative probability distribution with mean of 15 years and standard deviation of 4 years

probabilistic future requirements on the benefit of excess
capability is discussed in Section 4.3.

4.3 Uncertainty in benefit and cost

The benefits of excess capability are only realized if the pre-
dicted requirement emerges within the system’s service life.
Accordingly, the benefit of excess capability is calculated
according to

B =
ni∑

i=1

pibi(Xi) (12)

where pi is the probability of occurrence of the i-th pre-
dicted requirement (as shown in Fig. 12), and bi is the
benefit that is added by Xi for that requirement.

The variance of the benefit can be calculated with the
Taylor-series approximation according to

σ 2
B ≈ p2σ 2

b + b2σ 2
p + σ 2

b σ 2
p (13)

where σb is calculated with the Taylor-series approxima-
tion from the variance of X. It should be noted that (13)
assumes that all inputs are Gaussian and independent, which
may be an inaccurate assumption in some practical cases.
Nevertheless, we use it in this paper to simply indicate that
propagating uncertainty is essential to the proposed theory
and can be done with care using one of many propaga-
tion methods found in the literature (Ayyub and Klir 2006;
Anderson and Mattson 2012).

The costs of excess capability are considered to be unaf-
fected by uncertainty. This is because all initial costs are
incurred immediately whether or not the predicted future
requirement ever emerges. Any recurring costs are carried
across the entire service life, even after the excess capability
is used in an evolved state. However, because the recur-
ring costs of excess are linked to the service life, the total
cost will be greater for a system with a longer service life.
Uncertainty in service life is discussed in Section 4.4.

4.4 Uncertainty in service life

If there is uncertainty in the predicted service life of the
system, it will affect the net present value calculated for all
cash flows described in Section 4.3. We can account for this
by including the probability of future events (pi) in the net
present value (NPV) calculation according to

NPV =
m∑

i=1

FVi

(1 − r)pi t
(14)

where FV is the future value of the cash flow, r is the
interest rate, and t is the time until the cash flow. Several
methods have been proposed for dealing with uncertainty
with respect to future cash flows (Cardin et al. 2007). The
best method for accounting for this change depends on the
information available during design. Engineers should use
the method that works best with the information they have
available.

4.5 Uncertainty in evolvability

As defined by (8), evolvability is a function of the amount
of excess capability in the system (X). When we include
uncertainty, the amount of excess capability is defined
probabilistically by a mean (μX) and standard deviation
(σX). Using the Taylor series approximation mentioned in
Section 4.3, we can calculate the variance of the system
evolvability based on the variance of excess capability.

4.6 Optimization under uncertainty

This analysis seeks to maximize the benefit of excess capa-
bility while minimizing any associated costs. Additionally,
the optimization accounts for and mitigates the effects of
uncertainty in the model. This is accomplished by shifting
the constraints on the design space and by minimizing the
propagated variance of the cost and benefit as objectives
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Fig. 13 Illustration of how uncertainty can shift the design space

in the optimization framework. The formulation of the
optimization problem is thus given by

minimize:
X

maximin(−B̄(X), C̄(X), σ 2
B(X), σ 2

C(X))

subject to: Xmin + kσX ≤ X ≤ Xmax − kσX

Gi(X) ≤ pi − kσi

Hi(X) = qi

(15)

where B̄ and C̄ are the mean benefit and cost, σ 2
B and σ 2

C are
the variance of the benefit and cost, and k is the number of
standard deviations of feasibility for the optimized solution
set. All inequality constraints (Gi) are shifted by k standard
deviations away from the orginal constraint bound. Equality
constraints (Hi) are particularly difficult to manage under
uncertainty. Messac and Mattson (2003) suggest that some
equality constraints must be strictly satisfied even under
uncertainty, while others may be changed into inequality
constraints with an allowable margin.

Due to the shift in constraints, the outer edges of the
design space are attenuated. This causes the optimal solu-
tion curve to shift, as illustrated generally in Fig. 13.

This change in the design space has important implica-
tions for planning for evolvability. It means that a given
amount of excess capability will often have less bene-
fit toward evolution than is calculated without considering
uncertainty.

In Section 5, we demonstrate the methods discussed for
optimization under uncertainty (k �= 0) on the design of
a military ground vehicle. The results are compared to the
same model optimized based on deterministic parameters
and requirements (k = 0).

5 Example (non-deterministic): military ground
vehicles

To demonstrate the methods discussed in the previous
section, we reconsider the military ground vehicle intro-
duced in Section 3.

Table 7 Minimum and maximum bound (same as Table 1) and the
standard deviation for each type of excess capability in the military
ground vehicle

Type of Excess Xmin Xmax σX

Excess length (XL) 1.00 m 4.00 m 0.05 m

Excess width (XW ) 2.00 m 4.00 m 0.05 m

Excess height (XH ) 1.25 m 2.50 m 0.05 m

Excess payload (XS ) 0 kg 3000 kg 250 kg

Excess power (XP ) 0 kW 400 kW 10 kW

To illustrate the effects of uncertainty, the amount of
excess capability in the system is assumed to have a nor-
mal distribution with a known standard deviation. This is a
typical form of aleatory uncertainty found in manufacturing
parameters. The standard deviation of each design variable
in this example is also given in Table 7.

For the current analysis, we assume that the designers
have specified a minimum feasibility of 99.99 % for any
generated designs. This corresponds with a shift of 4 stan-
dard deviations from the mean. Therefore, we will shift each
constraint by 4σ .

5.1 Probabilistically defined requirements

In the current example, we assume that the same four future
requirements introduced in Section 3.2 exist; the require-
ment to become (i) an armored transport vehicle, (ii) a
telecommunications vehicle, (iii) a vehicle to launch UAVs,
and (iv) a vehicle to support currently unknown medical-
related technology. In the current example, each of these
requirements is defined by a probability distribution. Table 8
outlines the probability that each future requirement will
occur, based on a 20 year service life. If the service life is
more or less than 20 years, the probability of occurrence
changes as demonstrated in Fig. 12.

5.2 Uncertain benefit and cost per unit excess

The benefit of excess for this non-deterministic example is
the same as that presented in Section 3 (deterministic exam-
ple). The benefit with respect to each future requirement

Table 8 Probabilities of potential future states to which the vehicle
might need to evolve

Potential evolutions Probability mean Probability Std. Dev.

Armored transport vehicle 0.95 0.05

Communication vehicle 0.80 0.10

UAV launch vehicle 0.40 0.10

New medical tech vehicle 0.20 0.15
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is, however, scaled by the probability of that requirement
occurring over time. The benefit (bi) terms are provided in
Table 3.

The costs are not affected by the probability of future
events. However, the net present value of all cash flows is
affected by the service life. The costs of excess capability
for the current analysis are given in Table 4.

5.3 Non-deterministic optimization formulation

The uncertainties discussed above are used in the opti-
mization, such that the problem formulation is given by

minimize
X

maximin(−B(X), C(X), σB(X), σC(X))

subject to (1.00 + kσXL
) ≤ XL ≤ (4.00 − kσXL

)

(2.00 + kσXW
) ≤ XW ≤ (4.00 − kσXW

)

(1.25 + kσXH
) ≤ XH ≤ (2.50 − kσXH

)

(0.00 + kσXS
) ≤ XS ≤ (3000.00 − kσXS

)

(0.00 + kσXP
) ≤ XP ≤ (400.00 − kσXP

)

(0.60 + kσXSSF
) ≤ SSF

(16)

where X = {XL, XW, XH , XS, XP }, and where XL, XW ,
and XH have units of meters, XS has units of kilograms,
and XP has units of kilowatts. The minimum and maxi-
mum bounds for each type of excess capability form the

primary inequality constraints. A final inequality constraint
ensures that the static stability factor (SSF) remains above
0.60 as defined by (10). Each constraint is shifted based on
the propagated variances.

5.4 Non-deterministic optimization results
and discussion

The model is simulated using a 5 % interest rate and a 20
year service life. The constraints are shifted by four stan-
dard deviations in the uncertain case, and by zero standard
deviations in the benchmark deterministic case. Figure 14
shows the Pareto front of the analysis under uncertainty
(red) plotted with the deterministic analysis (green).

Figure 14a shows a shifting of the Pareto front at the outer
extremities. A dramatic shift can also be seen in Fig. 14b,
showing that the optimal amount of evolvability with the
highest value return is less than previously thought. When
the points are sampled, it can be seen that the shift and atten-
uation are due to the change in inequality constraints, all of
which are binding at the extremities of the plot.

This solution set can be used to select the amount of
excess capability that should be included, based on the bud-
get that the stakeholders are willing to allocate towards
improving the evolvability of the system. It should be noted
that the minimum budget that will turn a net positive value

Fig. 14 Preliminary generations and final solution set for military ground vehicle with a 20 year service life
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Fig. 15 Optimal solution for a military ground vehicle with a 20 year service life and a $40,000 budget constraint

for excess added is higher for the non-deterministic case
than for the deterministic case (although only slightly for
this 20 year case). Figure 15 shows that for a budget of
$40,000 the value calculated with consideration for uncer-
tainty is significantly less than the value calculated without
uncertainty (the deterministic case was shown in Fig. 9).

The optimal solutions for three different budget con-
straints, as defined by the deterministic analysis (k = 0),
are listed in Table 6, and the optimal solutions for the same
three budget constraints, as defined by the non-deterministic
analysis (k = 4), are listed in Table 9. As can be seen in this
table, no solutions exist in the $50,000–$60,000 range. This
is due to the increased limitation on the amount of excess
capability that can be added, due to shifting inequality
constraints.

The value calculated under uncertainty for a budget of
$40,000 is nearly 40 % less than the value predicted for
the same budget in the deterministic solution. The value
of excess for a budget of $50,000 is 60 % less than the
value predicted for the same budget in the deterministic
solution. However, the greatest divergence is seen after the
benefits begin to outweigh the costs of excess. Beyond
this “break-even” point, the deterministic analysis shows
a steady growth in the net value of excess capability.

Table 9 Highest value configuration for different budget constraints
under uncertainty (k = 4)

$40,000 Budget $50,000 Budget $60,000 Budget

XL 3.71 m 3.71 m N/A

XW 3.78 m 3.79 m N/A

XH 1.87 m 1.87 m N/A

XS 1,984 kg 1,986 kg N/A

XP 254.55 kW 351.39 kW N/A

Cost $39,823 $48,046 N/A

Benefit $50,149 $60,440 N/A

Value $10,325 $12,394 N/A

Evolv. 0.42 0.55 N/A

However, the non-deterministic analysis reveals a trend
toward decreasing value with increased excess capability
beyond this point. This shows how optimizing without
consideration for uncertainty can yield misleading results.

5.5 Final design selection based on non-deterministic
evaluation

Figure 14 demonstrates the wide range of possible optimal
solutions with varying evolvability and value. In order to
select a single optimal design, designers use selection crite-
ria. In this example, the selection criteria is chosen to be the
budget allocated for improving system evolvability, which
is taken to be $50,000. From Table 9 we find that the system
that will yield the highest value, with 99.99% feasibility and
a service life of 20 years, is the system shown in Fig. 16.

Fig. 16 Simple representation of the final design for a military ground
vehicle (under uncertainty) with a 20 year service life and a $50,000
budget constraint
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Fig. 17 Minimum service life to create a net positive value of excess capability under uncertainty (k = 4)

5.6 Expected service life

As has been mentioned, the optimal solution set is depen-
dent on the expected service life of the system. In Fig. 11,
we plot the optimal cost-benefit and value-evolvability
curves from the deterministic analysis (k = 0) for 15 differ-
ent service life expectations. Figure 17, shows these same
curves for the non-deterministic analysis (k = 4). These
plots show that, under uncertainty, there is an increase in
the minimum service life (from 14 to 18 years) required for
excess capability to be profitable. We also note that, under
uncertainty, the maximum value of excess capability is con-
siderably decreased for a given service life, at times by a
factor of two.

Most importantly, including uncertainty in our analysis
has shown that there is a limit to the value that can be added
by excess capability. The deterministic analysis showed
continually increasing value after the point of equal cost and
benefit. In contrast to this, the non-deterministic analysis
revealed that the value peaks and then declines with addi-
tional excess capability. In the absence of other constraints,
it is this optimal peak point that will return the highest value
from excess capability, not the maximum allowable amount
of excess.

6 Conclusion

Complex systems can benefit from added excess capability
that can be used to evolve towards emerging requirements.
In-service evolution is critical to many complex systems,
where long system life can lead to premature obsolescence,
unless the system can be evolved. Following the framework
introduced in this paper, designers can optimize the amount
of excess built into complex systems. Optimized systems
will be better able to meet future requirements without
adding excessive cost.

From a deterministic point-of-view, the example in
Section 3 illustrates the effectiveness of the proposed frame-
work in facilitating decision making for complex systems.
Importantly, it shows that consideration for value must be
included when designing for system evolvability. When the
same problem is optimized without consideration of value,
the results tend toward maximization of excess capability,
regardless of the costs and benefits associated with ful-
filling certain future requirements, as was the case with
Tackett et al. (2014). When the problem is optimized with
the framework presented herein, the solution decreases the
amount of excess assigned to future requirements that are
more costly or provide less benefit to the system.
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A key element of the described process is identifying and
accurately modeling the impact of potential future require-
ments. Complex systems designers must carefully select
functions for cost and benefit that accurately represent the
value trade-off in their situation. With and without the
consideration of uncertainty, the analysis revealed several
important characteristics of evolvable systems and excess
capability. Because evolvability is an inherently uncertain
attribute, it is sensitive to uncertain input parameters. As
such we include the effects of uncertainty in the opti-
mization of evolvability to avoid misleading results. As
illustrated by the military ground vehicle example, prop-
agating the uncertainty of model input parameters gives
a more realistic depiction of the design space, and allow
designers to measure the benefits of excess capability in the
presence of uncertainty.
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