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A B S T R A C T

Planetary surface exploration technology over the past few years has seen significant advancements on multiple
fronts. Robotic exploration platforms are becoming more sophisticated and capable of embarking on more
challenging missions. More unconventional designs, particularly transforming architectures that have multiple
modes of locomotion, are being studied. This work explores the capabilities of one such novel transforming
rover called the Transforming Roving-Rolling Explorer (TRREx). Biologically inspired by the armadillo and the
golden-wheel spider, the TRREx has two modes of locomotion: it can traverse on six wheels like a conventional
rover on benign terrain, but can transform into a sphere when necessary to negotiate steep rugged slopes. The
ability to self-propel in the spherical configuration, even in the absence of a negative gradient, increases the
TRREx's versatility and its concept value. This paper describes construction and testing of a prototype
cylindrical TRREx that demonstrates that “actuated rolling” can be achieved, and also presents a dynamic model
of this prototype version of the TRREx that can be used to investigate the feasibility and value of such self-
propelled locomotion. Finally, we present results that validate our dynamic model by comparing results from
computer simulations made using the dynamic model to experimental results acquired from test runs using the
prototype.

1. Introduction and background

For the last half century there has been growing interest in the
exploration of extra-terrestrial planetary surfaces in our solar-system,
particularly the terrain of our closest Earth-like neighbor, Mars. The
scientific goals that drive these various missions are diverse, but the
underlying theme is to search for evidence of past or present life and
assess the potential to harbor future human life [1]. Over the past
decades, precursor missions have been using robotic exploration
platforms to survey the extraterrestrial environment and gather critical
data that could serve in the design of future manned missions.

Although there have been a wide variety of vehicle architectures
proposed in the literature for use in such precursor missions, all
surface exploration platforms sent to Mars thus far have used tradi-
tional wheeled locomotion coupled with a particular passive suspen-
sion architecture called the “rocker-bogie suspension” [2–5], with the
latest addition to the list being NASA's MSL rover [6]. While these
traditional rovers are energy efficient and reasonably simple in design,
they are significantly limited with respect to the types of terrain that
they can safely navigate. In addition to traction issues on slopes [7],
traditional wheeled rovers also face the risk of toppling over on steep

slopes. The maximum tilt in any direction that the current Mars rovers
can supposedly withstand without toppling over is estimated to be
45degrees [3].

Thus, while traditional wheeled exploration platforms can navigate
moderately rough and flat terrain quite efficiently, they are not
designed to traverse rugged terrain with steep slopes (see Fig. 1 –

Source: ESA webpage [8]). The fact is, however, that most scientifically
interesting missions require exploration platforms with capabilities of
navigating such types of chaotic terrain. The science strategy for
human exploration of Mars [1] identifies the area in Fig. 2 as one that
will yield the most scientifically valuable information. This area
includes some of the most chaotic terrain features on the planet. It
includes the Tharsis volcanoes, the Valles Marineris, and numerous
craters and channels.

This desire to explore this particular region of Mars motivates the
development of new kinds of rovers that take advantage of the latest
advances in robotic technologies to traverse rugged terrain efficiently.
This paper presents analysis of one such proposed rover concept called
the Transforming Roving-Rolling Explorer (TRREx) [9] that is in-
tended to be able to safely navigate terrains that are combinations of
flat areas, gentle gradients, and steep rugged slopes.
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Biologically inspired by the way the armadillo curls up into a ball
when threatened, and the golden wheel spider uses the dynamic
advantages of a sphere to roll down hills when escaping danger, the
TRREx rover can traverse like a traditional 6-wheeled rover over
conventional terrain, but can transform itself into a sphere (see Fig. 3),
when necessary, to travel down steep inclines, or navigate rough
terrain.

Design of an exploration platform involves detailed systems and
subsystems level analysis encompassing all aspects of the defined
mission. Since the USP (unique selling proposition) of the TRREx is
its increased mobility compared to conventional rovers, the study of the
mobility of the TRREx is critical to assessing its potential advantage
over traditional rocker-bogie rovers for exploring rugged terrain. Initial
studies on the TRREx [10,11] have shown that the transforming
architecture has significant performance advantages over conventional
rocker-bogie rovers, especially when the target terrain has a combina-
tion of steep slopes and rugged terrain.

The dynamics of a wheeled rover with passive suspension is a
recurring subject in the literature [5,12,13], as are studies on active
suspensions, some of which are very general and can be applied to any
rover [14–16]. The dynamics of rolling of a TRREx-like architecture,
on the other hand, has, to our knowledge, not been examined in the
literature. There are studies that investigate the dynamics of self-

propelled spherical rovers [17–26], but the internal workings of each of
these rovers are principally very different from those of the TRREx,
hence these studies do not contribute to understanding the rolling
dynamics of the TRREx. For this reason, and also for the fact that the
overall increased mobility of the TRREx is expected to be attributed to
the novel (self-propelled) rolling mode, a detailed study of dynamics of
the TRREx in rolling mode has been prioritized and is the subject of
this paper.

In the broader framework, this work presents an investigation of
the contribution of the rolling mode to the enhanced mobility of the
TRREx by studying the Dynamics and Controls problems posed during
rolling. Topics such as structural design and power consumption are
not considered in this paper, as it is the intent of the current study to
highlight the mobility capabilities of the TRREx.

Developing a dynamic model for the spherical TRREx in its rolling
mode is complicated and presents a difficult starting point. Therefore, a
simplified cylindrical (planar) version of the TRREx is first considered.
We note that although the dynamics of a cylindrical TTREx are simpler
than those of a spherical TRREx, such a study is an important first step,
as valuable insight regarding the mobility of the TRREx in rolling mode
can be gained by considering the cylindrical (planar) problem.

In addition to developing a dynamic model of actuated rolling of a
cylindrical version of the TRREx, the construction and software

Nomenclature

B Center of mass of the chassis
B B reference frame
Cj Center of mass of jth leg, where j is the index for leg

number
Cj Cj reference frame, where j is the index for leg number
Crr Coefficient of rolling resistance
Crr Modified rolling resistance that includes a hyperbolic

tangent function

F
⎯→⎯

N Normal reaction force

F
⎯→⎯

fr Frictional reaction force

F
⎯→⎯

R Rolling resistance
g→ Gravity vector
h1, h2 x and y components of the location of the hinge of leg 1 in

the frame of the chassis B
I I I, ,xB yB zB Principle moments of inertia of the chassis
I I I, ,xC yC zCj j j

Principle moments of inertia of jth leg

i j kˆ , ˆ and ˆ
O O O Unit axes of an inertial reference frame

i j kˆ , ˆ and ˆ
B B B Unit axes of frame embedded in chassis (chosen to be

the principle axes of the chassis)
i j kˆ , ˆ and ˆ
C C Cj j j

Unit axes of frame embedded in jth leg (chosen to be the

principle axes of each leg)
lx, ly x and y components of the location of the hinge in the

frame of the jth leg Cj
M Mass of Chassis
mL Mass of each leg
O Origin of inertial reference frame
O Inertial reference frame

r(→)d
dt

O
Time derivative of vector r→ with respect to the O frame

v r→ = (→ )B O
O d

dt B O/ /
O

Velocity of point B with respect to the O frame

v→C O
O

/j Velocity of point Cj with respect to the O frame

⎛
⎝⎜

⎞
⎠⎟v r→ = →

C B
B d

dt C B/ /j

B

j
Velocity of center of mass of the jth leg with

respect to the B frame

a→B O
O

/ Inertial acceleration of the center of mass of the chassis

a→C O
O

/j Inertial acceleration of the center of mass of the jth leg

h
→

B chassis

O

, Angular momentum of the chassis about B with respect to
the inertial frame

h
→

B sys

O

, Angular momentum of the system about B with respect to
the inertial frame

h
→

B leg j

O

, ( ) Angular momentum of the jth leg about B with respect to
the inertial frame

h
→

C leg j

O

, ( )j
Angular momentum of the jth leg about its center of mass
Cj

Rw Outer radius of the Planar TRREx
r→P B/ Vector from center of mass of chassis B to point of contact

on ground P
r→C B/j Vector from the center of mass of the chassis to the center

of mass of the jth leg.
t time
β Slope of terrain
γ γ γ, ̇ , ̈j j j Angular displacement, velocity and acceleration of axis îCj

with respect to axis îB
μs Coefficient of static friction
ω ω ω, ,xB yB zB Scalar angular velocities of the chassis about the unit

axes of the B frame
ω ω ω, ,xC yC zCj j j

Scalar angular velocities of the jth leg about the unit

axes of the Cj frame

ω→BO
Vector angular velocity of B frame with respect to the O
frame

ω→CO j Vector angular velocity of Cj frame with respect to the O
frame

θ Angular displacement of axis îB with respect to îO
θ ω̇ = zB Angular velocity of the chassis about the k̂B axis (or k̂O

axis)
θ ω̈ = żB Angular acceleration of the chassis about the k̂B axis (or k̂O

axis)
θ θ,Oj Cj Angular positions of chassis for opening and closing the jth

leg
ΩL Limiting angular velocity magnitude for dynamic ranges in

controller

Τ(
→

)B sys ext, Total external torque about B acting on the system

F∑
⎯→⎯

ext Sum of external forces acting on the system
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development of a cylindrical TRREx prototype that is capable of
demonstrating actuated rolling is also presented in this paper.
Further, in this paper we present a validation of the dynamic model
by comparing simulation results with experimental data obtained from
test runs conducted using the prototype (Fig. 9).

2. Modeling

Multi-body dynamical systems have been traditionally modeled
using various analytical techniques, all of which incorporate some form
of rigid constraints to facilitate an order-reduction process that reduces
the overall number of independent degrees of freedom, and thus the
number of equations required to completely describe the system. This
process forces the complexity into a smaller set of equations that can
then be integrated to give the time response of the system. Typical
examples of such analytical techniques are the Newton-Euler formu-
lization and the use of Lagrange's Equations [27,28]. For this paper, we
have employed a Newton-Euler approach to generate our results, as
will be described below.

2.1. System description

The cylindrical version of the TRREx (Solidworks® model shown in
Fig. 4) has four arms that are actuated by motors. In dynamically
modeling this system we consider it to be a multi-body system with 5
bodies; one central frame or ‘chassis’ and four ‘legs’. The four contacts
between the legs and chassis are constrained to be hinges with a single
rotational degree of freedom. A no-slip condition is assumed at the
contact between the ground and the cylindrical surface, and this
assumption is checked and verified as part of the simulation (making
use of the coefficient of static friction, as listed in Tables 2, 3). Each
unconstrained body in the planar space has three independent degrees
of freedom, but after applying the rigid constraints at the joint and
applying the no-slip constraint, we have from the Kutzbach-Gruebler's
mobility equation [36] that such a system has five degrees of freedom.
Out of these five degrees of freedom, four degrees of freedom, i.e. the
motion of the legs, are control inputs provided by the controller; so in
actuality the system has one degree of freedom, namely the angular
position of the chassis. The analytical derivation of the governing
equation for this degree of freedom is presented below. The develop-
ment presented assumes that there is no slipping between the ground
and the cylindrical surface (as discussed above), and assumes that the
movements of the parts of the motor used to rotate the legs contribute a
negligible amount to the overall dynamics of the system (due to the
relatively small inertias of the moving motor components when
compared with the rest of the prototype).

2.2. Definition of frames

The first step in the dynamical analysis of a system of rigid bodies is
to define frames, each specified by its origin, unit axes, and the body
that it moves with (i.e. is embedded in). For each body that is moving, a
separate frame is defined with its origin at the center of mass of that
body, with the unit axes aligned in the direction of that body's principle
axes. As shown in Fig. 5, if the point B is the center of mass of the
chassis (excluding the legs) and the directions i jˆ , ˆ

B B and k̂B (k̂B is into
the plane of the paper) are the principle axes directions of the chassis,
then the B frame, denoted by B , is defined to be a frame with its origin
at B and unit axes i jˆ , ˆ

B B and k̂B .
In a similar fashion, let the legs be numbered 1 through 4 and have

centers of masses C1 through C4 respectively. Let the principle axes
directions of legs 1 through 4 be i j kˆ , ˆ , ˆ

C C C1 1 1 through i j kˆ , ˆ , ˆ
C C C4 4 4

respectively. Then, Cj is defined as a frame with its origin at Cj and

unit axes i jˆ , ˆ
C Cj j

and k̂Cj
for j=1 to 4. In addition to these frames, an

inertial fixed reference frame O is defined, whose origin is arbitrarily
placed at the point of contact between the sphere at the ground at a
given instant of time (e.g. t=0), and whose axes are aligned as shown in
Fig. 5.

2.3. Derivation of the governing equation

Following a standard Newton-Euler approach (e.g. as described in
Meirovitch [27]), the total external torque about B acting on the system

Fig. 4. Cylindrical/Planar TRREx.

Fig. 3. Transformation of the TRREx between roving and rolling modes.

Fig. 2. Proposed region for maximum scientific return [1].

Fig. 1. Terrain features on Mars.
Source: ESA.
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Τ(
→

)B sys ext, is related to the change in angular momentum of the system
about B as follows:

⎛
⎝⎜

⎞
⎠⎟ ∑Τ d

dt
h v m v(

→
) =

→
+ → × →

B sys ext

O

B sys

O

B O
O

L
j

C O
O

, , /
=1

4

/j
(1)

In this equation, h
→

B sys

O

, is the angular momentum of the system about

B with respect to the inertial frame, mL is the mass of each leg, v→B O
O

/ is

the inertial velocity of the center of mass of the chassis and v→C O
O

/j is the

inertial velocity of the center of mass of the jth leg. The term

v m v→ × ∑ →
B O

O
L j C O

O
/ =1

4
/j appears because the torques and angular

momentum are written about a point B which is not necessarily the
center of mass of the entire system [27].

Next, in Eq. (1), the external torques acting on the system are
written in terms of the forces they are derived from, and the right hand
side is written in terms of inertias, angular velocities and correction
terms (which arise due to the fact that B is not the center of mass of the
entire system, as discussed above). The external forces acting on the
system are forces due to gravity (vector denoted by g→) and interaction
forces between the ground and the cylindrical surface of the prototype.
The ground is modeled as flat terrain (although it can be sloped with

respect to the horizontal), and F
⎯→⎯

N is the normal reaction, F
⎯→⎯

fr is the

frictional reaction and F
⎯→⎯

R is the rolling resistance. These forces are
illustrated in Fig. 6, where for ease of illustration the terrain is
portrayed as horizontal.

The sum of external torques about B acting on the system is:

⎛
⎝⎜

⎞
⎠⎟∑Τ r F F m r g(

→
) = → × (

⎯→⎯
+

⎯→⎯
) + → × →

B sys ext P B fr N L
j

C B, /
=1

4

/j
(2)

where r→P B/ is a vector pointing from the center of mass of the chassis B
to the point of contact with the ground, P, and r→C B/j is the vector from

the center of mass of the chassis B to the center of mass of the jth leg
(i.e. the point Cj). Since the system consists of the chassis and the four
legs (we are considering the angular momentum contributions of the
other components to be negligible in comparison), the total angular
momentum of the system can be written as

∑h h h
→

=
→

+
→

B sys

O

B chassis

O

j
B leg j

O

, ,
=1

4

, ( )

where h
→

B chassis

O

, is the angular momentum of the chassis about B with

respect to the inertial frame and h
→

B leg j

O

, ( ) is the angular momentum of
the jth leg about B with respect to the inertial frame.

It can be shown [27] that the angular momentum of a body about a

point other than its center of mass can be written as a function of its
velocity and its angular momentum about its center of mass. Therefore,
following [27] we have that the angular momentum of each leg about
point B can be expressed as follows:

h h r m v
→

=
→

+ → × →
B leg j

O

C leg j

O

C B L C O
O

, ( ) , ( ) / /j j j

Therefore,

⎛
⎝⎜

⎞
⎠⎟∑h h h r m v

→
=

→
+

→
+ → × →

B sys

O

B chassis

O

j
C leg j

O

C B L C O
O

, ,
=1

4

, ( ) / /j j j
(3)

where h
→

C leg j

O

, ( )j
is the angular momentum of the jth leg about its center

of mass Cj.
If the moments of inertia of a body are computed about its principle

axes, then the products of inertia will be zero. For the chassis, its
reference frame axes i j kˆ , ˆ and ˆ

B B B were by definition chosen to be the
principal axes, thus let the principle inertia components computed
about these axes be I I I, ,xB yB zB , respectively. Writing the angular
velocity of the B frame with respect to the O frame

as ω ω i ω j ω k→ = ˆ + ˆ + ˆ
B

O
xB B yB B zB B , it can be shown [27] that

h I ω i I ω j I ω k
→

= ˆ + ˆ + ˆ
B chassis

O

xB xB B yB yB B zB zB B, since B is the center of mass
of the chassis. Similarly, if for each leg I I I, ,xC yC zCj j j

are defined to be the

inertia components about the principle axes i j kˆ , ˆ , ˆ
C C Cj j j

, respectively,

and the angular velocity of the Cj frame with respect to the O frame is

ω ω i ω j ω k→ = ˆ + ˆ + ˆ
C

O
xC C yC C zC Cj j j j j j j

, then it can be shown [27] that

h I ω i I ω j I ω k
→

= ˆ + ˆ + ˆ
C leg j

O

xC xC C yC yC C zC zC C, ( )j j j j j j j j j j
.

Differentiating Eq. (3) with respect to the O frame yields Eq. (4),

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟

∑d
dt

h d
dt

h d
dt

h

d
dt

r m v

→
=

→
+

→

+ → × →

O

B sys

O O

B chassis

O

j

O

C leg j

O

O

C B L C O
O

, ,
=1

4

, ( )

/ /

j

j j
(4)

Rewriting the first term on the right hand side by using the transport
theorem [28] we obtain:

O

j

Ôi

ˆ
Oj

C3

C2

3Ĉ
i

2Ĉ
i

3

2

B 

ˆ
Bj

3
ˆ
Cj

2
ˆ
Cj

3C

2C

C

C

4
ˆ
Cj

1
ˆ
Cj

î

C4 

C1 

B̂i

4Ĉ
i

1Ĉ
i

Fig. 5. Definition of Frames.

Fig. 6. External forces on the Cylindrical TRREx.
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

d
dt

h d
dt

h ω h

I ω I I ω ω i

I ω I I ω ω j

I ω I I ω ω k

→
=

→
+ → ×

→

= ( ̇ − ( − ) )ˆ

+ ( ̇ − ( − ) )ˆ

+ ( ̇ − ( − ) ) ˆ

O

B chassis

O B

B chassis

O

B
O

B chassis

O

xB xB yB zB yB zB B

yB yB zB xB zB xB B

zB zB xB yB xB yB B

, , ,

Since our system is restricted to planar motion about the k̂B axis, we
have ω ω ω ω̇ = ̇ = = = 0xB yB xB yB . Thus, the above expression reduces
to,

⎛
⎝⎜

⎞
⎠⎟

d
dt

h I ω k
→

= ̇ ˆ
O

B chassis

O

zB zB B,
(5)

Following a similar process for each leg, we obtain,

⎛
⎝⎜

⎞
⎠⎟

d
dt

h I ω k
→

= ̇ ˆ
O

C leg j

O

zC zC C, ( )j j j j (6)

Using the product rule and transport theorem [28] the second term
in the summation in (4) can be re-written as:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

d
dt

r m v m v v ω r v

r a

→ × → = → × → + ( → × → ) × →

+ → × →

O

C B L C O
O

L C B
B

C O
O

B
O

C B C O
O

C B C O
O

/ / / / / /

/ /

j j j j j j

j j (7)

where
⎛
⎝⎜

⎞
⎠⎟v r→ = →

C B
B d

dt C B/ /j

B

j
is the velocity of center of mass of the jth leg

with respect to the B frame and a→C O
O

/j is the inertial acceleration of the

center of mass of the jth leg.
Substituting Eqs. (5–7) into Eq. (4) gives:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

h I ω k I ω k

m v v ω r v r a

→
= ̇ ˆ + ∑ ̇ ˆ

+ ∑ → × → + ( → × → ) × → + → × →

d
dt B sys

O

zB zB B j zC zC C

L j C B
B

C O
O

B
O

C B C O
O

C B C O
O

, =1
4

=1
4

/ / / / / /

O

j j j

j j j j j j

(8)

Now, substituting Eqs. (2) and (8) into Eq. (1), we obtain:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

r F F m r g I ω k I ω k

m v v ω r v r a

v v

→ × (
⎯→⎯

+
⎯→⎯

) + ∑ → × → = ̇ ˆ + ∑ ̇ ˆ

+ ∑ → × → + ( → × → ) × → + → × →

+ → × →

P B fr N L j C B zB zB B j zC zC C

L j C B
B

C O
O

B
O

C B C O
O

C B C O
O

B O
O

C O
O

/ =1
4

/ =1
4

=1
4

/ / / / / /

/ /

j j j j

j j j j j j

j

(9)

It is now noted that for the planar systemk k kˆ = ˆ = ˆ
B C Oj

, and that the

k̂O component in the vector Eq. (9) will ultimately yield the equation of
motion for the degree of freedom associated with the chassis.

The unknown forces in Eq. (9) can be found when Newton's second
law is applied to the system:

∑ ∑F M a m a
⎯→⎯

= → + →
ext B O

O
L

j
C O

O
/

=1

4

/j

In the above equation, F∑
⎯→⎯

ext is the sum of external forces acting on
the system, M is the mass of the chassis, mL is the mass of each leg, and

a→B O
O

/ and a→C O
O

/j are the inertial accelerations of the center of mass of

the chassis and the acceleration of the center of mass of the jth leg,
respectively. External forces acting on the system are gravity, static
friction, the normal reaction of the ground acting on the rover, and
rolling resistance forces. Hence we have:

∑Mg m g F F F M a m a→ + 4 → +
⎯→⎯

+
⎯→⎯

+
⎯→⎯

= → + →
L fr N R B O

O
L

j
C O

O
/

=1

4

/j
(10)

Note that rolling resistance is modeled as a force which opposes the
translational motion of the rover whose magnitude is proportional to
the magnitude of the normal force, i.e.:

F C F i i

F C F i i

⎯→⎯
= −

⎯→⎯ ˆ if motion is in the positive ˆ direction
⎯→⎯

=
⎯→⎯ ˆ if motion is in the negative ˆ direction

R rr N O O

R rr N O O

2.4. Numerically integrating the governing equations

In developing computer code to numerically integrate the analytical
equations listed above, the dependence of the direction of rolling
resistance force on the direction of motion is implemented by inserting
a hyperbolic tangent function in the evaluation of a modified rolling
resistance coefficient Crr [35]. This was done to avoid the integrator
taking inordinate amounts of time to integrate when the velocity of the
chassis becomes extremely small (close to zero), and the idea behind
this numerical technique is described below. When the system is
approaching rest, the direction of the rolling resistance force keeps
changing almost every time-step, which can lead to significant numer-
ical errors over time. The hyperbolic tangent function mitigates this
issue by providing a margin between a small positive velocity and a
small negative velocity during which the opposing force tapers off to
zero at zero velocity.

Thus, if F C F i
⎯→⎯

= −
⎯→⎯ ˆ

R rr N O then Crr is set to be:
⎛
⎝⎜

⎞
⎠⎟C C= tanhrr rr

θ
θ

̇

ṫrigger

where θ ̇
trigger is some small positive value of angular velocity. Note that

the value of the hyperbolic tangent function rapidly approaches unity
when its argument moves away from zero, takes the sign of its
argument, (and hence of θ )̇, rapidly approaches zero as θ ̇ approaches
zero, and thus makes the rolling resistance force zero in a continuous
fashion as θ ̇ approaches zero.

The ĵO component in Eq. (10) is used to first solve for the normal
force. From this, the rolling resistance can be determined and used in
the îO component to solve for the frictional reaction. This allows for the

quantity F F(
⎯→⎯

+
⎯→⎯

)fr N to be solved for in Eq. (10) and plugged into Eq. (9).

The k̂O component of Eq. (9) is in terms of system geometric and mass
constants and the control inputs of the legs, which are all known. The
only unknown is the variable describing rotary motion of the chassis
about the B frame. Labeling this variable as θ, we have that ω θ= ̇

zB and
ω θ̇ = ̈

zB . Thus, Eq. (9) yields a second order differential equation in θ
that can be numerically integrated to give the motion of the chassis as a
function of time.

2.5. Control inputs to model

Recalling Fig. 5, if γjd is the desired angle at a given instant of time

between the i iˆ andˆ
C Bj

axes in the positive k̂Cj
direction, then the desired

input motions of the legs (as functions of time) are given by γ γ γ, ̇ , ̈jd jd jd
for the four legs i.e. j=1, 2, 3, 4. When these values are inserted into the
equation of motion, the result is a second order differential equation
with the only unknown being the chassis angular position θ. This
differential equation can be then be numerically integrated (we used
the ode45 suite in MATLAB® [37]) to obtain the time evolution of the
chassis angle. When performing the simulations, we assume that the
actuators (linear motors) generate the desired motions of the legs (i.e.
the γjd terms as functions of time) exactly, i.e. the motion of the legs are
treated as an input to the system when computing the system response.

Initial studies assumed that the angular acceleration of each leg
followed a cubic polynomial (in time) from rest position to rest
position. But it was observed from experiments using the prototype
that a piecewise constant acceleration of the piston (of the linear motor
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between the leg and the chassis), when transformed to the angle of the
leg, better characterized the opening and closing motion of the legs, so
this was the approach taken in performing the simulations, as will be
seen in later sections of this paper.

One of the intended features of the TRREx is that self-propulsion
(actuated rolling) can be achieved by controlling the timing of opening
and closing of legs such that continuous rolling is generated, and we
will demonstrate that this intended feature is a reality through both
analysis and experiment. Note that as the TRREx rolls, the legs will
have to be retracted in time so that the system does not roll over an
opened leg (i.e. so that ‘ground interference’ does not occur). Each leg
could be set to open and close at pre-determined values of the angular
position (for range of operation, see Fig. 7), but as the angular velocity
increases the legs will have less and less time to completely retract.
Thus, the maximum speed of actuated rolling is directly limited by the
capacity of the actuators which move the legs; therefore, to avoid
ground interference: (1) the actuators are set to retract the legs at
maximum capacity; and (2) the ranges of operation are made to be a
function of chassis angular velocity, i.e. the controller starts closing the
legs earlier and earlier as the speed of rolling increases.

Looking at Fig. 7, we note that if leg 2 is set to open at a particular
chassis angle θ θ= O2 (note that here “O” in the subscript stands for
“open”), and close at angle θ θ= C2 (note that here “C” in the subscript
stands for “closed”), we have that as the angular velocity of the system
increases, this closing angle will move closer to θO2 (proportionally) and
is equal to θO2 at some limiting angular velocity ΩL. Therefore the range
of operation of the leg decreases linearly and tends to zero as the
system velocity tends to the limiting velocity.

Thus, in our closed loop scheme, control inputs to the legs are
functions of both of the current states (angular position and velocity).
Since the control inputs are discontinuous functions of the states, they
are implemented in code by detecting ‘event crossings’ (as opposed to
substituting the inputs as a function of states in the equations of
motion). During integration of the equation of motion, when an event
is detected (i.e. when the chassis position crosses an open or close angle
of a leg) the input to the system is changed appropriately and
integration is then continued. It should be noted that, upon the
occurrence of an event, ranges of all the legs except the one that just
finished actuation are updated (this avoids jitter).

3. Construction and development of prototype and
microcontroller for Cylindrical TRREx

3.1. Hardware

3.1.1. Structure
A cylindrical prototype of the TRREx was constructed to facilitate

the experimental validation of simulation results obtained from the
dynamic model. The prototype, as is the multi-body system modeled
above, is a 5-body system with a central chassis and four legs hinged to
this chassis. The physical prototype differs, however, from the con-
ceptual model seen in Fig. 4 in that the physical prototype rolls on
circular disks, rather than on the curved surfaces of its legs (see Fig. 8).
This was done to avoid machining curved surface areas; however, given
the assumptions made in creating the mathematical model of the
conceptual cylindrical TRREx, (i.e. we assumed that the surface of

contact is always a continuous circular shape) the equations of motion
for the physical prototype will be the same as for the conceptual model
after the mass and moment of inertia properties of the disks are
incorporated into the mass and moment of inertia properties of the
chassis. Hence, both the conceptual and the physical cylindrical TRREx
models are completely described by the same set of physical para-
meters (see Table 1), namely, the outer radius of the cylindrical surface
(Rw), the location of the center of mass of the leg with respect to the
hinge (lx and ly), the location of a hinge with respect to the center of
mass of the chassis (h1 and h2), the mass of the chassis (M) and each leg
(mL) and the inertia about the axis of rotation of the chassis (IzB ) and
each leg (IzCj

) about the respective points B and Cj.
Also provided for in the physical prototype is the ability to modify

the mass properties of the legs between experimental runs by adding
lead weights at the ends of the legs (shown as small grey circular disks
in Fig. 8). This enables the validation of the results from the dynamic
models for different points in the design space.

3.1.2. Electronics
The legs are driven by high speed linear motors with potentiometer

feedback and run on a 12 V DC supply (see Fig. 9). They are driven by
pulse-width-modulation through an H-bridge. A multi-axis acceler-

θ

Fig. 7. Controller – Dynamic ranges of operation.

Fig. 8. Prototype (left) in comparison with the dynamically modeled system (right).

Table 1
Physical/ Design parameters of prototype cylindrical TRREx.

Parameters Description Symbol Value Units

Geometric parameters Outer radius of cylindrical
surface

Rw 0.3937 m

Location of hinge of leg
w.r.t. center of chassis

h1 0.3364 m

h2 0.1259 m

Mass parameters (Leg
Design A)

Location of center of mass
of leg w.r.t. hinge

lx 0.1967 m

ly 0.0364 m

Mass of ‘chassis’ Mass of
each ‘leg’

M 24 kg
mL 0.8720 kg

Inertia about the rotation
axis of chassis

IzB 1.2650 kg m2

Inertia about the rotation
axis of each leg

IzCj 0.0082 kg m2
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ometer is used as an orientation sensor. It determines the gravity
vector direction in the chassis frame from which the micro-controller is
able to compute the orientation of the chassis. A National Instruments
micro-controller, the Sb-RIO 9611 [38] is used to implement the
control system. It has a 266 MHz processor running a RTOS (real-time
operating system), 128 MB storage, 64 MB RAM and has a 1 M gate
Xilinx Spartan FPGA. The board is powered by a 24 V DC supply. There
are two battery packs: a 12 V 10,000 mAh battery to run the motors
and a 24 V 3800 mAh battery to run the controller. It should be noted
that care was taken while mounting all the electronic components to
ensure that the center of mass of the entire system when all the legs are
closed remained at the center of the chassis.

3.2. Software

The microcontroller can be programmed using the National instru-
ments proprietary graphical programming software known as
LabVIEW [39]. The processor onboard runs a RTOS which interacts
with the FPGA module which in turn interfaces with hardware I/O. As
the role of the microcontroller (target) is to perform simultaneous
control and data acquisition while the system is in motion, a ‘headless’
architecture was chosen for the embedded system on the TRREx
prototype, i.e. all data acquisition, control and storage is performed
on the target and there is no need for interaction with a computer
(host). Once the target memory is full, data can be transferred to
another storage device using standard FTP protocol over an Ethernet
connection.

A headless architecture has two top level ‘Virtual Instruments’
(VI's) running asynchronously; one on the RTOS and the other on the
FPGA. An architecture diagram showing the processes and intercon-
necting communication paths is depicted in Fig. 10. The Data acquisi-
tion loop/process on the FPGA records the values at the analog inputs
of the target which are connected to the potentiometers and the
accelerometer. This data along with a timestamp generated by the
40 MHz FPGA clock is streamed through a single DMA (dynamic
memory allocation) FIFO (first-in-first-out) stream in an interleaved
fashion and is unpacked on the data logger process on the Real-time VI
(RT VI) using decimation before it is saved onto the onboard memory.
Simultaneously this data is also made available to the control loop

process on the FPGA (via inter-process communications), which uses
the data to compute the orientation of the chassis and the positions of
the legs. This information is shared via current value tags with the
Dynamic range computation loop on the RT VI that further computes
the rotational velocity of the chassis and the dynamic ranges. This
information is again relayed back to the control loop on the FPGA VI
(via tags) which then makes control decisions based on the position of
the chassis and dynamic ranges of operation of each leg and sends out
control signals to the motors.

While in terms of high throughput at high acquisition rates a DMA
FIFO stream is the preferred communication path for data transfer in
data acquisition processes, to ensure low latency (at high execution
rates) in control, current value tags were the preferred communication
path between control processes on the RT VI and the FPGA VI
(Fig. 11). Messages/Commands were also used to relay infrequent
data that facilitate lossless data transfer and storage (acknowledgment
flag, buffer overflow flag etc.). The dynamic ranges computation
process was offloaded onto the Real-Time processor to take advantage
of floating-point math which is more efficiently executed by a processor
compared to the FPGA.

Additional logic in the control loop on the FPGA provided for an
initiation time for the legs to go to their initial positions (and for filter
stabilization), for software implemented limit switches with locking
torques to hold the leg in position when fully open or closed and also
for hard stops in cases of emergency. The dynamic ranges logic in the
RT VI was implemented in exactly the same way as in the mathematical
model of the system, i.e. the ranges of operation of each leg get updated
(as a function of current rotational velocity) every time an event is
detected.

Fig. 9. Prototype and Hardware (Top-left: System, Top-middle: Legs and actuators, Top-right: Controller, Bottom-left: H-bridge, Bottom-middle: Accelerometer, Bottom-right: Battery
packs).

Interleaved 
FIFO Stream 

Tags 

Message/Command 
and Tags Disk 

Real-Time VI 

Dynamic Ranges 
Computation Loop 

Data Logger 

FPGA VI 

Control Loop 

Data Acquisition 
Loop 

Inputs from 
Sensors 

Outputs to 
Actuators

Fig. 10. Embedded system architecture.
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4. Comparison of simulations versus experiments

4.1. Determination of parameters

In order to compare experimental results with the results produced
by the mathematical model, the physical parameters (dimensions,

masses and inertias) of the prototype must be determined accurately
and input into the model. The geometric and mass properties can be
measured directly from the prototype but the inertias were extracted
from Solidworks® data. Care was taken to set relatively strict tolerances
during the fabrication processes such that the deviation of the mass
properties of the parts from the Solidworks® model to the physical
prototype were minimal. The physical parameters for the prototype
(with ‘leg design A’) are listed in Table 1 (see Table 4 for information on
leg designs ‘B’ and ‘C’).

The determination of the coefficient of rolling resistance was done
by experimentally measuring the deceleration during a free coast,
assuming this to be a constant value, and using the computational
model to find the value of rolling resistance that yields this deceleration
[40]. We used two different surfaces in our experiments, as is discussed
below. Experimental results showing how rolling resistance was
calculated for ‘Surface 1’ are shown in Fig. 12. The sub-plots starting
from the top are position, velocity and acceleration, respectively. The
system is accelerated to a certain speed and then allowed to freely coast
to a halt. In this case a rolling resistance coefficient value of 0.0035 in
the analytical model corresponds to the average deceleration experi-
enced by the experimental prototype on this surface. Static friction

Fig. 11. LabVIEW – Top level VI's and RT VI front panel.

Fig. 12. Rolling resistance determination.
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values for the testing surfaces are taken from the literature [41–43]. All
environmental parameters for ‘Surface 1’ are listed in Table 2.

4.2. Comparison of responses

To validate the results from the models, several different cases are
presented each representing a different point in the parameter space of
the problem. Two different surfaces are considered, ‘Surface 1’,
represented by parameters shown in Table 2, was a terrazzo floored
hallway, and ‘Surface 2’, represented by parameters shown in Table 3,
was a carpeted hallway.

Also, three different mass distributions for the legs were considered
(achieved by varying the masses attached to the ends of the legs). The
parameters for these, i.e. ‘leg design A’ (extracted from data in Table 1),
‘leg design B’ and ‘leg design C’, are shown in Table 4.

Case 1. Leg Design A on Surface 1.
First, the system with Leg design A was tested by setting its

programmable electronics to perform actuated rolling on ‘Surface 1’.
Data was acquired using the physical prototype and simulation results
were generated for this scenario using the mathematical model. It
should be noted that for all the simulations, the ground interaction
forces were monitored after the integration and checked to ensure that

F μ F
⎯→⎯

<
⎯→⎯

fr s N at every time-step, i.e. that slip did not occur during the
simulation. The plots in Fig. 13 show the experimental data acquired in
comparison with the simulation results. Leg actuations are started at
the 5 s mark (true for Cases 2–5, below, as well) and the system
performed actuated rolling for 20 s (i.e. actuations were stopped at the
25 s mark). The top subplot shows the leg actuations, the middle
subplot shows the chassis position, and the bottom subplot shows the
velocity of the chassis with time. It can be seen from this comparative
plot that there is good correspondence between experimentally ob-
served data and simulation results with the system using Leg design A
while rolling on ‘Surface 1’. (Note that the difference in leg positions
versus time between the experiment and the simulation is because of

the fact that the opening and closing angles of a particular leg (see
Fig. 7) were reached at slightly different instances of time in the
physical system as compared to the simulation).

Case 2. Leg Design A on Surface 2.
Next, the same system was placed on ‘Surface 2’ which has a higher

rolling resistance than ‘Surface 1′. The actuation period was identical to
Case 1, and results of both the experiment and simulation are shown in
Fig. 14. It is seen in this case that the system starts to roll, but is not
able to roll enough for the next leg in sequence to constructively
contribute to the perpetuation of rolling motion. Thus the system with
this design configuration (Leg design A) experiences ‘stall’ and is not
able to achieve a continuous actuated rolling motion on ‘Surface 2’. It
can be seen from the comparative plot that this ‘stall’ is also predicted
by the simulation.

Case 3. Leg Design B on Surface 2.
In the next case ‘Leg design B’ was mounted on the system and the

system was tested on ‘Surface 2’. The actuation period was identical to
Case 1, and the results are shown in Fig. 15. Since Leg design B

Table 2
Environmental parameters for Surface 1.

Parameters Description Symbol Value Units

Environment
parameters

Gravity g 9.81 m/s2

Rolling resistance Crr 0.0035 –

Coefficient of static
friction

μs 0.5 –

Slope of terrain β 0 Deg.

Table 3
Environmental parameters for Surface 2.

Parameters Description Symbol Value Units

Environment
parameters

Gravity g 9.81 m/s2

Rolling resistance Crr 0.0175 –

Coefficient of static
friction

μs 0.75 –

Slope of terrain β 0 Deg.

Table 4
Leg design parameters.

Parameters lx ly mL IzCj

Units m m kg kg m2

Leg Design A 0.1967 0.0364 0.8720 0.0082
Leg Design B 0.2419 0.0500 1.4240 0.0137
Leg Design C 0.2624 0.0529 1.9510 0.0162

Fig. 13. Experimental Validation - 'Leg Design A' on 'Surface 1'.

Fig. 14. Experimental Validation - 'Leg Design A' on 'Surface 2'.

Fig. 15. Experimental Validation - 'Leg Design B' on 'Surface 2'.
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increases the mass of the leg and moves the center of mass further out
compared to Leg design A, we see that the system is now able to achieve
continuous actuated rolling without stalling. Again, simulation predic-
tions are consistent with experimental observations.

Case 4. Leg Design B on Surface 1 with Dynamic ranges.
For the next case, the system with Leg design B was tested on

‘Surface 1’. Simulations and experiments showed that under this
experimental configuration the system tended to reach high rolling
velocities quickly, so that the legs could not be retracted in time to
avoid the system rolling over an opened leg (i.e. ‘ground interference’
would occur). To avoid this, dynamic ranges with a limiting velocity of
Ω π= 4 rad/sec = 720 /secL

° were used (see Section 2.2). (Note that for all
previous simulations, i.e. Cases 1–3, static ranges were used, i.e. the
range of operation of the legs did not depend on velocity.) Actuated
rolling was implemented for 10 s, and then the system was allowed to
coast. The comparative results of experimental data and simulation are
shown in Fig. 16; note the good agreement between simulation and
experiment.

Case 5. Leg Design C on Surface 2.
In this case Leg design C was mounted on the system, which in

comparison to Leg design B further increased the mass of the leg and
moved the center of mass out towards the tip of the leg. Actuated
rolling was implemented (on ‘Surface 2’) for 10 s and then the system
was allowed to coast to a halt. The comparative plots of simulation
predictions and experimental data are shown in Fig. 17, and a good
correspondence between the two is observed.

By comparing the results at different points in parameter space with
multiple experimental runs, and observing that the simulation results
match well with the experimental data in all cases, we have shown that
our dynamic model of the cylindrical TRREx does a good job of
predicting the actual motion of the system. The developed model can
thus be used as a design tool and has applications in analysis, design,
and control optimization of the system for a given target environment.

For example, some general/characteristic trends were observed as
we moved from leg design A to leg design B to leg design C (assuming
the same motor capacity), in that we can see that as we increase the
mass placed at the end of the legs, the tendency to stall on a given
surface decreases, but the tendency for ground interference increases.
These same trends were observed when the rolling resistance of the
rolling surface was decreased while keeping a constant leg design. So,
in a target environment with a higher rolling resistance, a leg design
with more mass set out at the tip will tend to roll without stall, but a
controller incorporating dynamic ranges with a lower limiting velocity
ΩL will need to be employed to avoid ground interference.

The experimentally validated mathematical model for the cylind-
rical TRREx presented in this paper could also be applied to study
actuated rolling performance by defining performance parameters. One
example performance parameter that captures both stall tendency and
ground interference tendency is the peak velocity achieved before the
second actuation. This is an indicator of starting acceleration and (from
Fig. 14, Fig. 15 and Fig. 17) increases from 20 °/s to 50 °/s to 65 °/s as
we go from leg design A to B to C, respectively, on Surface 2. Another
interesting performance parameter that can be found, by letting the
simulations run until a steady state is observed, is the maximum steady
state velocity that is attainable by the system on a given surface.

4.3. Discussion on deviations between model and experiments

Although the simulation results exhibit a good match with experi-
mental data, the match is not exact. The causes of the differences
between the two can be divided up into two main categories: (1)
deviations of the mathematical model from the true response of the
system due to inaccurate modeling assumptions, and (2) deviations of
the mathematical model from the true response due to experimental
errors. Some modeling assumptions that are likely to have introduce a
deviation are due to the fact that the movements of the parts of the
linear motor were ignored, and the motors were assumed to exactly
generate the desired motion of the arms. Inaccuracies could also be due
to the relatively simple friction and rolling resistance models used.
Additional deviations could be due to inaccurate estimation of the
physical parameters (both design and environmental) and inaccuracies
which were introduced during fabrication.

5. Conclusions

A novel planetary exploration rover, called the Transforming
Roving-Rolling Explorer (TRREx), designed to navigate rugged terrain
with steep slopes, was described. A mathematical model that captured
the ‘actuated rolling’ dynamics of a cylindrical version of the TRREx
was developed using a Newton-Euler approach. The construction and
software development of a physical prototype for the purpose of model
validation was presented. Results generated by the mathematical
model were compared with data acquired during experimental runs
using the prototype. The comparison was done for several different
configurations on two different surfaces, and in each case good
correspondence was observed between simulation results and experi-
mental data. The good agreement between the results predicted by the
dynamic model and experimental results indicates that the model can
be used to predict the behavior of the actual physical system, and thus
can be used to investigate the capabilities and limitations of actuated
rolling of a cylindrical TRREx. While this paper concerns a cylindrical
version of the TRREx, insight gained from this study should aid in the
design, fabrication, and control optimization of a Spherical TRREx.
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Fig. 16. Experimental Validation - 'Leg Design B' on 'Surface 1' with Dynamic Ranges.

Fig. 17. Experimental validation - 'Leg Design C' on 'Surface 2'.
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