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ABSTRACT 
Point-estimates of part-worth values in customer preference 

models have been used in market-based product design under 

the simplifying assumption that customer preferences can be 

treated as deterministic. However, customer preferences are not 

only inherently stochastic, but are also statistical estimates that 

exhibit random errors in model formulation and estimation. 

Ignoring uncertainty in customer preferences and variability in 

estimates has caused concern about the reliability and 

robustness of an optimal product design solution. This study 

quantitatively defines reliability and robustness of a product 

design under uncertainty when using discrete choice methods. 

These metrics are then integrated into a multi-objective 

optimization problem to search for product line solutions 

considering reliability and robustness under uncertainty when 

using discrete choice methods. 

 

Keywords: market-based product design; product line; design 

optimization; discrete choice model; reliability; robustness 

 

1. INTRODUCTION 
According to [1], “human decision-making involves 

trading off costs or benefits, which are known now with 

certainty, with risky outcomes that will occur in the future.” 

“From a social science perspective, these decisions are 

associated with varying levels of probability (risk) and 

uncertainty because of missing information (ambiguity) [2].” 

When using discrete choice models to estimate customer 

preference, certainty and uncertainty in choice behavior has 

been discussed using observable and unobservable parameters. 

Uncertainty in customer preference estimates associated 

with discrete choice methods is a matter of individual-level 

decision behavior. Mixed logit models have typically been used 

to estimate preference heterogeneity, allowing variation in taste 
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across individuals. Parameters of random utility models consist 

of a vector of preference coefficients (observable) and a random 

error term (unobservable). The observable vector of the 

preference coefficients is specified to be a multivariate normal 

distribution. The error term reflects specification errors, omitted 

factors, non-observable factors, and unobserved heterogeneity 

of preferences [1]. If the error term is independent and 

identically distributed (i.i.d.) with a Type I extreme value 

distribution, and the maximum utility rule is applied in 

simulations, the expectation is identical to the logit model [3]. 

The hierarchical Bayes mixed logit (HB-ML) model assumes 

preference heterogeneity as a continuous distribution, and 

Bayesian inference is employed to estimate posterior 

distributions of the preference coefficients. Using numerical 

integration in estimation requires many draws of posterior 

distributions to be generated. Rather than using the whole 

posterior distribution, point-estimates are found by taking the 

mean value of the posterior distribution and these values are 

used in a market simulation because of their reduced 

computational cost.  

While many who use market simulators to make decisions 

commonly use point-estimates of individual’s part-worths, this 

ignores uncertainties that are inherent to discrete choice 

methods. Customer preferences are not only inherently 

stochastic, but also are statistical estimates that exhibit errors in 

model form and estimation procedures. For this reason, there 

are concerns about the reliability and robustness of an optimal 

design solution under the presence of uncertainty when using 

discrete choice methods. 

Figure 1 illustrates how variations in part-worth estimates 

can influence the objective function in market-based design 

problems. If a single-objective problem is posed where the goal 

is to maximize market share of the product line and point-

estimates of preference are used, as shown in Fig. 1(a), the best 
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design is solution A. However, when variability within the 

preference estimates is considered, solution A is no longer the 

clear winner. Solutions B or C may capture more market share 

than solution A, as visualized by the box plots. In multi-

objective formulations, variation in the part-worth estimates 

leads to objective function values better described as surfaces, 

as shown in Fig. 1(b). Hence, choosing the optimal design is 

more difficult when preference estimate variations are 

considered. 

 

 
Figure 1. Variability in hypothetical solutions [4]: 

(a) Single-objective  (b) Multi-objective 

 

The objective of this paper is to propose an optimization 

problem to search for product line solutions considering 

reliability and robustness under uncertainty when using discrete 

choice methods. When uncertainty in discrete choice methods 

is considered, selecting a final solution is made more difficult 

by the variability that occurs in objective function values. 

Therefore, additional criteria are required to evaluate the 

tradeoffs between design solutions when uncertainty sources 

are considered. With this purpose, realiability and robustness of 

a product line design are characterized. Draws from a Bayesian-

based mixed logit model are used with a Randomized First 

Choice (RFC) simulation to investigate how part-worth 

variation impacts the optimal design solution. A multi-objective 

optimization problem is then developed that incorporates 

reliability and robustness in product line design optimization. 

Section 2 provides background knowledge about discrete 

choice models and the quantification of uncertainty in market-

based product design. Section 3 introduces definitions of 

reliability and robustness. Section 4 presents a numerical study 

to investigate how demand uncertainty impacts the results of a 

product line search, and a multi-objective problem formulation 

is proposed. Conclusions, limitations, future work are discussed 

in Section 5. 

 

2. BACKGROUND 
The necessary background knowledge regarding discrete 

choice models is introduced to aid in the explanation of this 

study. Section 2.1 briefly introduces the fundamental concepts 

of discrete choice models capable of estimating individual-level 

part-worths – hierarchical Bayes mixed logit (HB-ML). Section 

2.2 presents HB draws and RFC as methods to account for 

variation in the demand model. 

 

2.1 Discrete Choice Models 

Discrete choice analysis is used to model product demand 

by capturing a customer’s choice behavior [5]. The choice 

utility that person n  obtains from alternative i  can be 

expressed as a sum of an observed utility 
niV   and an 

unobserved random disturbance 
ni  as in Eq. (1) [3,6]: 

T

ni ni ni n ni niU V x                               (1) 

Here, 
ni  is a vector of part-worths for the individual and 

nix  

is a vector of values describing the configuration of design 

alternative i . Usually, 
n  is unknown and is estimated 

statistically. When the unobserved random disturbance, 
ni , is 

independent and identically distributed (i.i.d.) and represented 

by a Gumbel distribution [3], the difference between two 

extreme value distributions has a logistic distribution. Using the 

logit model, the choice probability that person n  chooses an 

alternative i  is obtained from the simple logit formula shown 

in Eq. (2) [3]: 
T
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Preference heterogeneity is defined as a variation in taste 

across individuals [7] and leads to differentiated product 

specifications. The most widely used model to represent 

heterogeneity is the HB-ML model. The HB-ML model defines 

individual-level preferences using continuous distribution 

functions. By setting model parameters as multivariate normal 

distributions, the model can estimate individual-level part-

worths using Bayesian inference and Markov-Chain Monte-

Carlo (MCMC) methods [3]. It is called a hierarchical model 

because there are two levels. The assumption at the higher level 

is that an individual’s preferences are normally distributed. At 

the lower level, a multinomial logit model is assumed to 

quantify the choice probability [8]. 

 

2.2 Uncertainty in Discrete Choice Methods 

In engineering, ambiguity and vagueness of sustem 

variables or parameters are considered as primary sources of 

uncertainties [9]. Ambiguity is generally due to noncognitive 

(aleatory) sources that include: inherent physical randomness, 

statistical uncertainty, and modeling uncertainty [9]. Thus, it is 

irreducible uncertainty. Vagueness is due to cognitive 

(epistemic) sources such as limited knowledge and human 

factors. Thus, these are reducible [10]. 

In discrete choice methods, aleatory uncertainty can be 

caused by dynamics on demand and cost [11], inherent 

preference inconsistency [12], and response variability [13,14]. 

Epistemic uncertainty is caused by choice context [15,16], 

sampling errors in Bayesian inference [17,4,18], and demand 

model misspecification [19–21]. 

To quantify the reliability and robustness of a design under 

uncertainty in demand modeling, it is necessary to address 

stochastic preference coefficients and directly use their 

probability distributions in a design problem. However, by 

taking point-estimates of part-worths, certain uncertainty 

effects are ignored in a market simulation. In this study, two 
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methods are investigated to account for the uncertainty in 

discrete choice methods: HB draws and RFC. 

 

2.2.1. HB draws 

Estimating an HB model requires a number of iterations 

before convergence is assumed. The hierarchical Bayesian 

framework, which is implemented using MCMC techniques, 

yields complete posterior distributions of the preference 

coefficients at the individual-level. Thus, multiple estimates, 

called draws, are generated that form the posterior distributions 

of each respondent’s preference coefficients. These draws are 

then averaged for each respondent to create a single vector of 

part-worths that represent preferences for each attribute level 

included in the study. Then, the single value is used as a best 

guess of random parameters ignoring variability in parameters. 

In market-based product design, the point-estimates of part-

worth coefficients have been typically used as a simplifying 

assumption to reduce the computational burden of market 

simulations. To represent the variability associated with the 

Bayesian procedure, the draws themselves can be used in 

market simulations instead of using point-estimates [4,22,23]. 

 

2.2.2. Randomized First Choice (RFC) 

A first choice model assumes respondents choose the 

product alternative with the highest utility value from a 

competitive set (maximum utility rule) [24]. RFC modifies this 

process by introducing error terms into the utility equation 

during the simulation phase. Multiple part-worth values can be 

created by adding random errors to the aggregate part-worths 

obtained from the HB model. Then, a choice simulation is 

conducted using these modified part-worths following the 

maximum utility rule. RFC was first introduced as a simulation 

technique by Orme and Huber [25,26] in response to product 

similarity challenges. They demonstrated that using this 

formulation in a market simulator outperformed four commonly 

used models in predicting holdout choice shares: an aggregate 

multinomial logit model, a latent class model, an individual 

choice analysis of the latent class, and a HB-ML model. 

However, RFC can become computationally demanding, 

making it challenging to use in large-scale market-based design 

problems. 

RFC adds two kinds of variability to the individual-level 

part-worths. The utility of alternative i  for an individual n  is 

derived as [25] 

, ,( )T

ni n a n ni p nU E x E                         (3) 

Here, aE  is a vector of variability added to the part-worths and 

pE  is a variability added to product i . Intuitively, attribute 

variability represents inconsistency in a respondent’s relative 

weights or part-worths applied to product attributes [25]. The 

attribute variability term reflects variation in taste [27,28]. 

Product variability occurs when a customer evaluates choice 

alternatives inconsistently in several different choice tasks [25]. 

In logit models, product variability is mathematically 

equivalent to the unobserved random disturbance in Eq. (1). 

One of Gumbel distribution and normal distribution can be 

selected for aE , but a Gumbel distribution has to be used to 

define 
PE  for logit models [22]. Hence, a tuning process is 

required to determine the degree of variability. After 

introducing the variabilities to the point-estimates of part-

worths, the first choice rule is simulated to predict choice 

shares. 

While preference share methods are tunable for scale and 

usually more precise than a first choice simulation, they suffer 

from IIA (independence from irrelevant alternatives) issues 

[24]. First Choice Share (FCS) can resolve IIA issues but 

usually results in biased predictions and is not tunable for scale 

[24]. The RFC model combines the desirable aspects of first 

choice and share of preference choice rules by introducing 

variations in point-estimates and simulating choices using the 

maximum utility rule many times. RFC simulations can resolve 

the extreme choice share issue by tuning the extent of attribute 

and product variation in Eq. (3). 

 

3. METHODOLOGY 
This paper introduces a quantitative measurement of 

reliability and robustness of a product line design in market-

based design using RFC simulation. A multi-objective problem 

formulation is proposed to integrate the stochastic aspects into 

one framework. Reliability and robustness are quantitatively 

defined in Sec. 3.1 and 3.2, respectively. Section 3.3 describes 

a multi-objective problem formulation used to search for a non-

dominated set of product line solutions under uncertainty in 

discrete choice models. 

 

3.1 Reliability of Market-based Product Design 

In engineering terminology, reliability is defined as “the 

probability of successful performance”; thus it is the converse 

of the term probability of failure [10]. In this study, reliability 

indicates satisfactory performance of a product line design. 

Reliability-Based Design Optimization (RBDO) [29] is “a 

method to achieve confidence in product reliability at a given 

probabilistic level [30].” Various methods have been developed 

to advance reliability analysis and design methods: sampling-

based design using MCS (Monte-Carlo Simulation) [31], MPP 

(Most Probable Point) [32] based double-loop RBDO using 

FORM (First-Order Reliability Method) [33,34] and SORM 

(Second-Order Reliability Method) [35], and a single-loop 

method called SORA (Sequential Optimization and Reliability 

Assessment) [36]. This study adopts sampling-based reliability 

analysis using MCS because no analytical method has been 

developed to define uncertainty in discrete choice models and 

market simulations.  

Using the notion of failure to characterize unwanted 

behavior, two different types of “simulation failures” are 

proposed when designing a product line using discrete choice 

methods and individual-level choice behavior: 

Failure-I: A respondent fails to choose one of the products 

associated with the product line design solution in 

a single RFC replication. 

 

Figure 2 illustrates Failure-I. Offerings in a product line, 

which are determined from the solution to an optimization 

problem, are called Own Offerings or Own Products in the rest 

of the paper. There are three Own Offerings, three competitor 
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products, and a no-buy option in this simulated market. The 

numbers 1 and 0 represent a respondent’s product selection in a 

first choice simulation. The bit string c  expresses the first 

choice result using RFC replicates. For example, if a consumer 

chooses Own Product 1 (P1) in the first choice simulation using 

RFC replicates, the choice result is saved as  1000000c = . 

 

 
Figure 2.Visualization of Failure-I for a  

Single RFC Replicate 

 

F1( )I c  is an indicator function to count Failure-I and is 

defined as 

F1

0,
( )

1, otherwise
I


 


PLc
c .                          (4) 

PL
 is a product line set that consists of Own Offerings. If one 

of Own Offerings is not selected in the first choice simulation 

using RFC replicates, 
F1( ) 1I c . This means the product line 

design fails under uncertainty when using discrete choice 

methods. 

The probability of Failure-I is defined as 

  ,

F1 F1 ,

1 1

1 1
( )

N R
n r

n r

n r

P P I
N R  

   c cPL .            (5) 

N  and R  indicate the number of respondents and RFC 

replicates, respectively. Reliability-I, defined as 
F11 P , 

represents how much market share is expected under demand 

uncertainty when introducing the product line solution into the 

market. Thus, Reliability-I represents the first choice share of a 

product line using RFC replicates. 

 

Failure-II: A respondent changes their product choice 

decision (made using deterministic preference 

coefficients) to a different product or ‘none’ 

within the choice alternatives when the 

respondent is given an identical choice again. 

 

 
Figure 3. Visualization of Failure-II 

 

Figure 3 illustrates Failure-II. 
F2 ( )I c  is an indicator 

function to count Failure-II and defined as 

F2

0,
( )

1, otherwise

D
I


 


c
c .                           (6) 

D  is a deterministic choice set obtained using point-estimates. 

If a respondent changes their choice decision made using 

aggregate part-worths to a different product in RFC simulation,

F2 ( ) 1I c . The probability of Failure-II is defined as 

  ,

F2 F2 ,

1 1

1 1
( )

N R
n r

D n r

n r

P P I
N R  

   c c .            (7) 

Reliability-II, defined as 
F21 P , suggests how effectively the 

deterministic product line design works in the simulated market 

when uncertainty is considered when using discrete choice 

methods. 

 

3.2 Robustness of Market based Product Design 

In engineering terminology, robustness is defined as “the 

ability to tolerate the effect of uncertainty or variation in design 

parameters without eliminating the source of the uncertainty or 

variation [37,38].” Robust design is a method to improve 

design quality by minimizing the effect of uncertainty on the 

output performance function [30]. It can be categorized into two 

types based on the source of variation [39]: 

Type-I: “minimizing performance variations caused by 

variations in uncontrollable parameters [39]” as 

described in Fig. 4. 

Type-II: “minimizing variations in performance caused by 

variations in design variables [39]”. 

 
 

 
Figure 4. Robust design Type-I [39] 
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Robustness in market-based product design can be defined 

as the ability to tolerate the effect of uncertainty in discrete 

choice methods. In product line optimization problems, design 

variables are commonly defined as the factors that embody 

product features. Preference coefficients are used as parameter 

values to define a market model and are not controlled in the 

optimization problem. Thus, robust design for market systems 

belongs to Type-I (if the design variables are not subject to 

uncertainty) because demand uncertainty is uncontrollable. A 

robust design problem for market-based product design can 

therefore be defined by minimizing objective function 

variability under demand uncertainty. In this study, First Choice 

Share predictions of a product line design using RFC replicates 

are chosen as the objective function, and variability is measured 

using the standard deviation (SD) of FCS values. 

 

3.3 Product Line Design under Uncertainty 

A product line search can be developed as a triple-objective 

optimization problem that contains the reliability and 

robustness definitions discussed in Sec. 3.1 and 3.2. Thus, the 

problem aims to maximize an average choice share  

(Reliability I) and its robustness while minimizing the 

probability of Failure-II. The formulation of the product line 

search problem is expressed as: 

maximize  1-𝑃𝐹1 

minimize  𝜎𝐹𝐶𝑆 

minimize  𝑃𝐹2 

with respect to  X = product configurations of own 

offerings in a product line 

subject to  Lower and upper bounds of each attribute 

(8) 

Eq. (8) is a simplified representation of product line search 

problems, and many variants could be further developed. A 

company seeking an opportunity to adopt a market-based 

product design strategy would need to reflect limitations and 

decisions concerned with manufacturing, marketing, or 

engineering design. Design problems should be able to control 

any of these limitations and the decisions associated with 

product feature configuration. The limitations and decisions 

associated with these other domains could be formulated as 

design variable constraints. 

The triple-objective product line search problem returns a 

Pareto optimal set and dominated solutions consisting of many 

different product line configurations. After these results are 

returned, a process is needed to help the decision maker choose 

the best design from this set. For example, a formal multi-

attribute decision method such as the hypothetical equivalent 

and inequivalent method (HEIM) [40] could be adopted. 

However, this aspect of the design process is not presented in 

this paper and remains as future work. 

 

4. NUMERICAL STUDY 
Task procedures of the numerical study are described in 

Fig. 5. Generating synthetic choice data is presented in Sec. 4.1. 

The HB-ML model is fit using the synthetic discrete choice data 

and RFC replicates are drawn in Sec. 4.2. Deterministic design 

and the analysis of robustness and reliability are conducted in 

Sec. 4.3. Finally, Sec. 4.4 discusses a multi-objective product 

line search problem considering reliability and robustness under 

uncertainty in discrete choice methods. 

 

4.1 Generating Synthetic Choice Data 

Simulated discrete choice data is used in this study to 

ensure answer consistency in the choice task questions and to 

control the amount of RFC replicates needed. To generate 

synthetic survey data, a tablet PC selection scenario is 

introduced. The attributes and levels used in this study are 

described in Table 1. The capital letter A with a number stands 

for an attribute. Survey questions are generated using Sawtooth 

SSI Web [41]. Respondents are asked to evaluate 15 buying 

scenarios including five hold-out questions. Each scenario 

contains three product alternatives and a fourth no-buy option. 

Synthetic preference data is generated by: 

Step 1. Generate deterministic synthetic preferences 

· Generate 
  (mean) for each attribute: ( 1,1)U   

· Generate 
  (standard deviation) for each attribute: 

(0.5,1)U  

· Generate 
n  (individual’s preference) for each 

attribute: ( , )N     

· Generate 
no buy 

 (no-buy threshold) for each 

respondent: (0.6,0.8)U  

Step 2. Variation in the deterministic preference 

For each choice task of each respondent 

· Generate taste variation for each attribute: ( 0.5,0.5)U   

· Generate variation in the no-buy threshold: ( 0.1,0.1)U   

 

Table 1. Tablet PC attributes and levels 

  Attribute 

 

 A1 A2 A3 A4 

Price 
 

Connec-

tivity 
Processor 

Screen 

Size 
Storage 

Level 1  Wi-Fi Entry 7 inch 16 GB $ 200 

Level 2  Cellular Mid 8 inch 32 GB $ 400 

Level 3   High-End 10 inch 64 GB $ 600 

Level 4    12 inch 128 GB $ 800 

Level 5     256 GB  
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Figure 5. Flowchart of the presented study 

 

 

4.2 Quantifying Variation in Demand Model 

The individual-level part-worths of the HB-ML model are 

obtained using Sawtooth Software’s CBC/HB module [8], and 

10,000 burn-in iterations are performed. Then, 10,000 draws 

after burn-in are saved (skipping every hundredth draw) per 

respondent, for a total of 2,000,000 (200 respondents×10,000 

draws) sets of 19 part-worths. 

Determining how many draws of HB and how many 

sampling replications for RFC to use is significant as it affects 

the accuracy and efficiency of simulation. An existing study 

[22], whose survey size is similar to the synthetic data generated 

in this study, used at least 100 draws per respondent based on  a 

reliability test between replicates. The study compared MAE 

(Mean Absolute Error) values to its 95th percentile value. 100 

replicates per respondent may be acceptable in terms of the 

internal reliability test, however, 100 replicates would not be 

enough to guarantee accuracy of the probability of failure when 

using Monte Carlo Simulations (MCS). In MCS, using 100 

samples allows for a 1% probability interval of failure. For a 

reliable estimate, at least ten times the minimum is usually 

recommended [10]. In this paper, 10,000 replicates per 

respondent are used to predict the probability of failure at a 

level of 0.1%. 

Another challenge is determining the RFC parameters that 

represent variations in the aggregate part-worths. Since there 

are 14 product attribute levels, there are 14 normal distributions 

for 
aE  and a Gumbel distribution for 

pE . Their mean values 

should be exactly the same as the point-estimates. Therefore, 14 

standard deviation values must be determined for the normal 

distribution. In Table 2, the standard deviation of each 

preference coefficient is represented as attribute,levelσ . For the 

Gumbel distribution, the mean is given by   -1E X = υ+ γα  , 

where υ  is a location parameter, α  is a scale parameter, and γ  

is the Euler-Mascheroni constant that is approximately equal to  

 

 

0.5772 [42]. By setting  E X 0  to maintain the point-

estimates, the two parameters can be divided into independent 

and dependent variables. In this study, the scale parameter is 

searched as -1

Pσ = α  to determine 
pE  in Eq. (3). 

A pattern search algorithm is used to search for the RFC 

parameters that minimize the mean absolute error (MAE) in 

predicting choice shares using holdout questions [25]. For 

example, suppose there are three products and they have 20, 30, 

and 50 choice shares, respectively. If we obtains the predicted 

first choice shares as 10, 20, and 70, respectively, the MAE 

value is calculated as  20 10 30 20 50 70 / 3 13.3      . 

A smaller MAE for the holdout questions implies better 

predictive ability. Table 2 shows MAE values of each data. As 

suggested in Orme and Baker’s study [22], using HB draws 

does not result in a smaller MAE value than RFC data in 

simulations, despite the simplified assumptions about the 

attribute and product variation distributions. According to [22], 

a reverse number of levels effect, and an excluded level effect, 

can explain why RFC is more effective than using HB draws 

when considering the predictive power of market simulation. 

The mechanism of the search process is simple but 

computationally expensive due to the size of the replicates. In 

this study, the RFC parameters are obtained using 1,000 

replicates (RFC 1k data). Then, 10,000 replicates called A-RFC 

10k data are generated using the parameters. The feasibility of 

the augmented RFC samples in product search problems is 

investigated. As shown in Table 3, the RFC 1k data results in 

exactly the same product line design as the RFC 10k data. This 

result suggests that reducing sample size in a parameter search 

problem would be acceptable in terms of product search 

objectives. The augmented RFC data also results in exactly the 

same product line solution with the RFC 1k data. This implies 

the A-RFC 10k data can maintain the original variation 

information of the RFC 1k in the design problem. However, to 

have confidence in the data augmentation technique for RFC 

sampling, increased validation is necessary in future work. 
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Table 2. Comparison of MAE values for each data 

Data N 
RFC parameters 

MAE 
Enhan-

cement σ1,1 σ1,2 σ2,1 σ2,2 σ2,3 σ3,1 σ3,2 σ3,3 σ3,4 σ4,1 σ4,2 σ4,3 σ4,4 σ4,5 σP 

Point-estimates 1                9.60 Datum 

HB draws 10,000                6.58 31.5% 

RFC 1k 1,000 0.12 0 3.04 0 0 0 0.54 0.36 0 0 0.26 0 3.06 3.32 0.16 3.63 62.2% 

 

Table 3. Optimal product line solution of each RFC data 

Data Objective 
 

FCS (%) 
 Product 1  Product 2  Product 3 

  A1 A2 A3 A4  A1 A2 A3 A4  A1 A2 A3 A4 

RFC 1k 
Maximize 

FCS 

 65.23                

A-RFC 10k  65.38  2 2 1 4  2 2 4 3  2 1 3 4 

RFC 10k  65.58                

 

4.3 Single-Objective Product Line Search 

This section investigates the effect of uncertainty by 

quantifying the reliability and robustness of a product line 

solution obtained using part-worth point-estimates. Then, A-

RFC 10k data is used to evaluate the product line design to 

introduce uncertainty. Reliability and robustness of the 

deterministic design are quantified using the definitions in  

Sec. 3.1 and 3.2. 

Table 4 shows the pricing structure for each product 

attribute level. A base price of $200 is added. To calculate the 

part-worths for the price attribute, a piecewise linear 

interpolation is assumed. The competitor products in a 

simulated market are defined as shown in Table 5. 

 

Table 4. Pricing structure 

Level  A1 A2 A3 A4 

1  0 0 0 0 

2  40 80 40 40 

3   160 80 80 

4    160 120 

5     160 

 

Table 5. Attribute levels of competitor products 

Competitor  A1 A2 A3 A4 Price 

Product 1  2 1 1 5 $ 400 

Product 2  1 3 2 3 $ 480 

Product 3  2 2 4 4 $ 600 

 

Analysis of a latent class model [43,44] suggests that 

creating three Own Offerings in a product line is the most 

effective number of products to offer. The solution to the 

deterministic product line problem is shown in Table 6. Two 

different objectives are set: maximizing FCS and maximizing 

SOP. One Own Product is identical in the two solutions, but 

two Own Products are different. Notice that Own Product 3 of 

the SOP solution is identical to the third competitor product, 

because the share of preference simulation cannot resolve the 

IIA issue.  

Table 7 shows the reliability and robustness of the design 

solutions obtained in Table 3 and Table 6. Each design solution 

is evaluated using A-RFC 10k replicates. Solution A indicates 

the optimum design of FCS problem using A-RFC 10k data and 

is shown in Table 3. Solutions B and C represent the optimum 

designs of FCS and SOP problems, respectively, which are 

shown in Table 6. 

Solution C has a smaller FCS than Solution B. This is 

because the Own Product 1 of Solution C and competitor 

product 3 divide FCS equally due to the presence of a duplicate 

offering in the choice set. The FCS value of Solution B 

decreases from 78.50% when using point-estimates to 63.46% 

when using RFC replicates. Since first choice share predictions 

can resolve IIA issues, first choice share decreases when 

evaluated using RFC replicates [24]. 

If a decision-maker is only concerned about average FCS 

values, the best solution is A because it has the largest choice 

share. However, when variability in the demand model is 

considered, Solution A is no longer the clear winner. Figure 6 

describes distributed FCS values of the three design alternatives 

under variation in the demand model. It is obvious that there is 

a chance that Solutions B or C can capture more market share 

than Solution A as described in box plots. For the error bars, the 

central mark indicates the median value, the box indicates the 

25th and 75th percentiles, the whiskers extend to approximately 

±2.7σ with normal distribution assumption. Outliers outside 

±2.7σ are individually plotted [45]. 

 

 
Figure 6. Variability in performance function 

 

 



 

 8 Copyright © 2016 by ASME 

  

 

Table 6. Deterministic optimal product line solution 

Data Objective 
 Product 1  Product 2  Product 3  

Function value 
 A1 A2 A3 A4  A1 A2 A3 A4  A1 A2 A3 A4  

Point-

estimate 

Maximize FCS  2 2 4 3  2 2 1 5  2 2 4 2  FCS = 78.50 % 

Maximize SOP  2 2 4 3  2 2 1 2  2 2 4 4  SOP = 77.79 % 

 

 

Table 7. Robustness and reliability analysis 

Solution Data Objective 
 FCS (%)  

F2P  (%) 
 Avg Min Max SD  

A A-RFC 10k Maximize FCS  65.38 54.5 76.0 2.69  35.42 

B Point-

estimates 

Maximize FCS  63.46 51.5 75.0 2.98  38.35 

C Maximize SOP  57.25 47.0 70.0 3.11  32.42 

 

To support design decisions under variation in the demand 

model, this study adopts the reliability and robustness 

definitions explained in Sec. 3.1 and 3.2. Results of robustness 

and reliability analysis for the three alternatives are listed in 

Table 7. All numbers in Table 7 are evaluated using A-RFC 10k 

data to quantify reliability and robustness under the uncertainty 

of A-RFC 10k data. 

The standard deviation of FCS values are used as a measure 

of design robustness, and the probability of Failure-II represents 

the reliability of a design under demand variation. For these 

results, there is no clear preferred solution alternative:  

· Reliability-I (FCS): A > B > C 
· Reliability-II: C > A > B 
· Robustness: A > B > C 

 

 
Figure 7. Distributed FCS and probability of Failure-II: 

(a) Solution A  (b) Solution B  (c) Solution C 

(d) 95% confidence ellipse of each solution 

 

Figure 7 7 depicts where solution conflicts occur in terms 

of reliability and robustness by describing FCS values over the 

10,000 RFC replicates, and the corresponding reliability of 

Failure-II. Each circle indicates a 95% confidence ellipse of all 

samples that can be drawn from the underlying normal 

distribution. In Fig. 7-(d), it is difficult to determine a clear 

preferred solution alternative as there is considerable overlap 

between Solutions A and B. Also, there is a chance that Solution 

C may capture more share and have less simulation failure than 

the other designs. For this reason, considering multiple 

objectives was proposed in Sec. 3.4 and the results of this 

analysis are presented in the next section. 

 

4.4 Multi-Objective Product Line Search Considering 

Reliability and Robustness 

To formulate a multi-objective product line search problem 

under uncertainty, the optimization algorithm is changed to the 

elitist non-dominated sorting GA (NSGA-II) [46,47] to take an 

advantage of its sorting algorithm. The size of the population at 

each generation is 120 because it is ten times the number of 

design variables. To enhance solution quality, a targeted initial 

population [48] is generated. Two elite individuals are 

guaranteed to survive each generation. Binary tournament 

based on crowding distance is used as a selection operator, 

while crossover occurs using arithmetic means. The mutation 

operator is based on the Gaussian distribution. For integer 

encoding, each component is rounded to the nearest integer. 

Finally, convergence is met when 50 generations are performed 

with no improvement in the best fitness function value. When 

using A-RFC 10k data, one generation took approximately 50 

minutes using a desktop running an Intel i7-2600 Quad-Core 

Processor 3.40 GHz with 8GB RAM. The total run time is 

approximately 10.3 days with 300 generations. 

The triple-objective product line search problem returns a 

Pareto optimal set and dominated designs consisting of many 

different product configurations. Figure 8 displays the Pareto 

optimal set and the dominated designs evaluated in the 

evolutionary algorithm. There are 37 unique solutions (black 

dots) in the Pareto optimal set and 6,020 unique designs (red 

dots) in the dominated set. The solutions obtained using the 

multi-objective optimization problem represent candidate 

product line designs. Thus, selecting one design solution from 
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all candidates in Fig. 8 is important to consider trade-offs 

between reliability and robustness in decision-making process. 

 

 
Figure 8. Pareto design alternatives of product line search 

problem: (a) 3-D  (b) FCS vs SD of FCS 

(c) FCS vs Prob. of Failure II 

(d) SD of FCS vs Prob. of Failure II 

 

 
Figure 9. Refined design solutions 

 

To narrow down the number of possible design 

alternatives, solutions capturing a predicted choice share below 

( FCS 55%tar  ) are eliminated. Also, solutions that do not meet 

a target reliability level (
F2 34%tarP  ) are excluded from 

consideration. After applying these filters, 71 candidates 

remain, including six non-dominated solutions as shown in  

Fig. 9. Selecting one solution among the set of alternatives in 

the feasible range is required but difficult because there are 

tradeoffs between FCS, SD of FCS, and the probability of 

Failure-II. For example, selecting one solution among solutions 

C, D, and E in Fig. 9 is difficult because of tradeoffs between 

function values as shown in Table 8. Solution C is the optimum 

design maximizing SOP obtained using point-estimates. 

Solution D has the largest FCS value among the candidate 

solutions in Fig. 9. Solution E has the smallest SD of FCS and 

the probability of Failure-II in Fig. 9. To finalize design 

decision considering reliability and robustness in a multi-

objective framework, a multi-attribute decision method such as 

HEIM would be needed to ensure that a rational decision is 

made. This will be applied in future work. 

 

Table 8. Solution comparison 

Solution FCS (%) SD of FCS (%) F2P  (%) 

C 57.25 3.11 32.42 

D 64.76 2.83 33.08 

E 55.14 2.32 24.60 

 

5. SUMMARY AND DISCUSSION 
The main contribution of the study lies in specifying the 

reliability and robustness of a product design under uncertainty 

when using discrete choice methods, and integrating these 

measures into a multi-objective optimization framework. In the 

proposed approach, an RFC model is used to introduce 

variation in the point-estimates of an HB-ML model. By 

simulating many choices, the RFC simulation can resolve issues 

associated with IIA and extreme choice share. An efficient 

search procedure is then proposed to quantify the degree of 

variation. A multi-objective optimization problem formulation 

is introduced using reliability and robustness to search for a set 

of non-dominated design alternatives. Then, a multi-attribute 

decision method could be applied to support making design 

decisions. 

This work demonstrates that a product line decision can be 

enhanced to exhibit greater realism by considering uncertainty 

when using discrete choice models. The definition of 

Reliability-II can improve the choice probability of a firm’s 

own product line design under uncertainty. Also, a product line 

exhibiting robustness would have the ability to tolerate 

perturbations. In conclusion, the solution quality associated 

with the non-dominated set is enhanced by considering 

uncertainty in discrete choice methods using RFC simulation 

and multi-objective optimization techniques. 

The proposed work has some limitations and future work 

is recommended. The degree of variation in RFC replicates 

depends on holdout question design because the parameter 

search problem in Sec. 4.2 aims to minimize the mean absolute 

error in predicting holdout choice shares. Thus, methodologies 

to design holdout questions are necessary to enhance validity of 

the uncertainty quantification method.  

Another potential shortcoming is that the proposed 

optimization problem would be computationally intensive 

because of using many RFC replicates, though an efficient 

parameter search procedure and a targeted initial population for 

the multi-objective problem are applied. Thus, enhancing 

computational efficiency would be further developed for 

practical use. If demand uncertainty and market simulation can 

be expressed using correlated continuous distributions at the 
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individual-level preference, analytical methods could be further 

explored to reduce computational burden. As computationally 

less expensive methods, analytical reliability analysis methods 

such as FORM and SORM when using a mixed logit model if: 

1) demand uncertainty could be expressed using continuous 

distributions with correlations in preference structure, 2) 

closed-form choice probabilities are available, and 3) market 

simulators could handle continuous distributions. 

Furthermore, developing tailored GA algorithms to draw 

designs close to Pareto set as many as possible is recommended 

to enhance the quality of product design search. Drawing 

quality designs is significant because a winning design may not 

be in the Pareto optimal set when considering a decision 

maker’s preference in a multi-attribute decision making 

method. Supervised genetic algorithms need to be explored to 

produce elaborated offspring. Lastly, the design alternatives 

obtained in the multi-objective problem should be evaluated 

using a multiattribute decision making method to determine a 

single product offering. 
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