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This paper explores how optimal configuration of a composite panel is influenced by the choice of anal-
ysis model – analytic or computational – and the consideration of multiple objectives. While past
research has explored aspects of this problem separately – composite ply orientation, multiple load sce-
narios, and multiple performance objectives – there has been limited work addressing the interactions
between these factors. Three loading scenarios are considered in this work, and it is demonstrated that
for certain scenarios an analytical model likely over-predicts composite performance. Further, for com-
plex loading scenarios it is impossible to develop an analytical model. However, this work also demon-
strates that the use of analytical models can be advantageous. Analytical models can provide similar
estimates to computational models for some loading cases at significantly reduced computational
expense. More importantly, it is also shown how solutions from the analytical model, which can be rel-
atively cheap to find computationally, can be used to seed the initial designs of a Finite Element-based
optimization. Run time reductions as large as 80% are demonstrated when these informed seeded designs
are used, even when the designs were created for a different set of loading scenarios.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Composite laminate design problems often involve large design
spaces that are discrete or mixed-integer. Engineers control the
number of layers and tailor the stacking sequence and fiber orien-
tation to the load path of a structure [1–3]. Additionally, choices
have to be made between (1) incorporating time-saving, low-
fidelity models or (2) accepting the computational cost and/or risk
of missing a deadline by using high-fidelity models. After the prob-
lem is formulated and the analysis model is chosen, an optimiza-
tion is completed and the solutions are used to guide composite
design decisions [4–8].

Early researchers formulated single objective optimization
problems with reduced design spaces and used analytical models
to diminish computational cost. Improved computational
resources have led to a greater prevalence of computational mod-
els that are more complex and the consideration of larger design
spaces that require advanced optimization techniques. The pres-
ence of multiple loading scenarios further complicates the selec-
tion of an optimal configuration. An optimal composite layup for
a single loading scenario is likely to be drastically sub-optimal
across multiple loading scenarios. The need to navigate such trade-
offs is common, especially in aerospace engineering applications
where composites may experience uniaxial tension and transverse
compression, uniaxial tension and biaxial compression, and load
cases with out-of-plane pressure.

Yet little, if any, research exists that explores problems with
multiple load scenarios and competing performance objectives.
In light of more complete theoretical [9–11] and computational
models [2,12] that have been created from increased understand-
ing of composite panel design, a better understanding of the rela-
tionship between model selection, computational cost, and
quality of solution is needed.

The objective of this paper is to explore the differences in opti-
mal composite configuration when a choice is made between using
an analytical model or a computational Finite Element (FE) model
in the presence of multiple performance objectives across three
different loading conditions. The research presented in this paper
compares where analytical and computational models exhibit sim-
ilar and different solution behavior. This outcome is important
because it directly addresses the challenge of when each model
can be used to facilitate exploration (generating new design candi-
dates and analyzing them cheaply) versus where exploitation may
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be needed using more computationally expensive models to
ensure the estimated performance of a design is accurate.

Previous research has considered multiple objectives for a sin-
gle load case when continuous angle orientations are used [13–
15]. Conversely, computational cost is managed in research that
considers multiple load cases by restricting the number of possible
orientation angles (typically to 5 or less) and relying on single
objective formulations [16]. This paper extends existing efforts
by allowing each ply to take on one of 19 possible fiber orientations
and by formulating multi-objective problem formulations for each
of the three loading scenarios considered. Outcomes from each
model are then analyzed for differences in terms of estimated sys-
tem performance and the design configurations that comprise the
final solution sets. Computational expense is also considered, and
opportunities for leveraging a combination of analytical and com-
putational models are discussed.

The layout of this paper is as follows: Section 2 provides rele-
vant background information regarding how FE methods (analyti-
cal and computational) and optimization approaches (problem
formulation, algorithm development) have been applied to com-
posite panel design problems. The research approach and problem
formulations are introduced in Section 3, and results are presented
in Section 4. These results are discussed in Section 5 while conclu-
sions and avenues for future work are presented in Section 6.
2. Brief discussion of theoretical foundations

Advancements made in modeling composite panels and opti-
mizing are presented in this section. The goal is not to comprehen-
sively cover all possible research associated with the analysis of
composite panels, or different approaches taken toward optimizing
them. Rather, prior work advancing the state-of-the-art is high-
lighted and current limitations are discussed.

2.1. Modeling of composite materials

Early composite analysis used Classical Laminated Plate Theory
(CLPT) which was an analytical formulation [9–11]. CLPT enabled
researchers to explore simple laminates where only a single ply
layer was optimized [10,11]. Other researchers extended the work
to predict buckling loads and first ply failure [9]; however, only
simple structures (plates or shells) could be considered and the
inclusion of multi-angle structures of complex geometry was not
permitted. Therefore, researchers naturally expanded into Finite
Element analysis, which is capable of predicting the response for
much more complicated loading scenarios.

Initial FE models were implemented using in-house codes. For
example, initial optimization using these codes centered on plates
subjected to transverse pressure and optimized with respect to the
mass and deflection [8]. Since then, numerous commercial FE
codes have been investigated with different failure theories. Shell
elements are often used as the basis of the analysis as they are
more computationally efficient than 3D solid elements and are
well suited for thin laminate analysis. Plate buckling with first
ply failure optimization was performed using the commercial FE
code SAMCEF with Hashin failure criteria [13]. Almeida and
Awruch consider multiple load case scenarios [16], but the choice
of fiber orientation in these analyses was limited to no more than 5
orientation angles. Lee et al. extended the feasible set of fiber ori-
entation angles to 12; however, only a single load case was consid-
ered [14].

Computational resource improvements have facilitated the
transition from analytical methods of analysis to FE-based compu-
tational methods, enabling more complex problems to be explored.
Yet, even the computational power offered by a typical desktop
computer can result in run times on the order of 15–30 min per
simulation. For thousands of iteration calls this can result in a large
computational expense. Additionally, optimization algorithms
have seen significant advancements in the form of gradient estima-
tion, the creation of new heuristic approaches, and parallelization
associated with population-based strategies. Overall, these
advancements improve solution quality while simultaneously
reducing computational expense, as discussed in the next section.

2.2. Optimization of composite materials

The choice of algorithm used to optimize a composite material
often depends on the structure of the problem formulation – dis-
crete or continuous variables, constraints, number of objectives –
and the availability of computational resources needed to solve
the problem in a timely manner. Techniques used in the literature
include direct search techniques [3], gradient-based approaches
[3,4], applications of heuristics and greedy behavior [3,12,5,6,17],
hybridizations of existing methods [3,18,19], and tailored algo-
rithms that make specific use of composite properties [7,20,21].
Direct search methods eliminate the computational cost associated
with calculating the derivative [22], but such approaches are gen-
erally applied to problem formulations that contain only a few
design variables due to decreased convergence rates [3]. For exam-
ple, partitioning methods were used in [23] because only a single
variable problem was considered. Small design spaces also allow
for enumeration strategies [24,25], where the outcomes of the enu-
meration can be used to guide design space down-selection [26]
and to identify which variables have the greatest impact on perfor-
mance measures [27].

Gradient-based methods offer faster convergence than direct
and heuristic methods, but often lack the ability to escape local
minimum and require continuous variables for gradient calcula-
tion [28] which limit applicability toward composite panel opti-
mization. The limitations of gradient-based approaches for more
complex problem formulations, and those with multiple minima,
have led to increased application of heuristic and greedy algo-
rithms [3,29]. For example, Irisarri et al. used an Evolutionary Algo-
rithm to maximize the buckling and collapse loads of a composite
stiffened panel [13]. The stacking sequences of the skin and stiffen-
ers were determined while maintaining a constant panel mass.
Genetic algorithms have also seen increased use when considering
objectives such as strength, buckling loads, weight, and stiffness
[3] because of their zero-order nature, the ability to tailor algo-
rithm performance, and their ability to find global minimums in
multimodal spaces.

The consideration of multiple objectives when formulating the
problem requires the use of different classes of optimization algo-
rithms. Early efforts used fiber orientation and a weighted sum
approach to maximize prebuckling stiffness, initial postbuckling
stiffness and the critical buckling load of uniaxially loaded lami-
nated plates [10]. Walker et al. used a golden section method to
determine the Pareto optimal value of fiber angle when maximiz-
ing the buckling loads associated with torsional and axial buckling
[11]. Genetic algorithms and finite element models have been
combined in [8] to simultaneously minimize mass and the deflec-
tion of laminated composite structures, and a Pareto-based evolu-
tionary algorithm has been used when minimizing the number of
plies while maximizing buckling margins [9].

A challenge of multiobjective problem formulations is that the
design space associated with them tends to be quite large. Compu-
tational efficiency becomes a significant consideration, and inade-
quate tuning of heuristic algorithms that lead to poor overall
solution quality may further increase computational expense.
While analytic models for composite panel design problems may
not be as accurate as Finite Element models, the design space is
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less computationally expensive to explore when they are used. A
missing contribution is identifying how the advantages offered
by an analytic model can be leveraged. An approach to answering
this question is introduced in the next section.

3. Research approach

While the application of optimization strategies to composite
panel design is not new, previous work has placed serious restric-
tions on the number of layers that could be considered, the orien-
tation angles that could be used, the number and complexity of
objective functions, and whether the problem formulation could
include constraints. The study in this paper removes, or relaxes,
some of these restrictions by allowing the orientation angle of each
ply in an 8-layer composite to be chosen from a set of 19 angle ori-
entations. The optimization problem formulation also includes two
competing objective functions and three different load cases are
considered. Further, as the computational cost of an optimization
is strongly influenced by the expense associated with each objec-
tive function evaluation, two different evaluation methods are con-
sidered. Solutions to these different formulations are explored for
similarities to understand how model fidelity can be leveraged to
achieve computational savings or where it leads to different pre-
dictions of performance that must be further analyzed.

The problem investigated in this work is a pressurized fuselage
skin modeled as a two-dimensional plate. The material in this anal-
ysis is a square (20-inch by 20-inch) graphite epoxy composite
with a constant thickness of 0.01 in. and simply supported edges.
Pressure on the panel induces loads in the axial and hoop direc-
tions. Additionally, a compressive load may exist, accounting for
fuselage bending. Associated material properties are listed in
Table 1. The loading scenarios considered are: (1) uniaxial tension
and transverse compression, (2) uniaxial tension and non-uniform
biaxial compression, and (3) uniaxial tension and non-uniform
biaxial compression with out-of-plane pressure. Load scenarios
are depicted in Fig. 1. In all three cases, buckling failure is exam-
ined for compressive loads. In load scenarios (2) and (3), the com-
pressive load in the direction of tension is 10% of the compressive
load in the transverse direction.

A computational model based on FE allows for complex struc-
tures to be considered under a wide variety of loading scenarios.
Analytic methods have higher computational efficiency, but accu-
racy decreases as composite complexity increases. Further, differ-
ent formulations of the analytic model are needed for different
loading scenarios. To explore how the choice of analysis model
and load scenario influences the optimal results, the approach in
Fig. 2 was developed. For Load Scenarios 1 and 2, non-dominated
points associated with a multiobjective optimization problem are
identified using both a Finite Element and analytic model. These
non-dominated points are then cross-evaluated to better under-
stand how model choice influences predicted composite perfor-
Table 1
Material properties: constituent properties of
composite.

Material properties Values

E1 30� 106 psi
E2 0:75� 106 psi
v12 0:25
G12 0:375� 106 psi
Xt 150� 103 psi
Yt 6� 103 psi
S 10� 103

Xc 100� 103 psi
Yc 17� 103 psi
mance. Non-dominated solutions obtained from the analytic
model for Load Scenarios 1 and 2 are then cross-evaluated to
explore how changes to load scenario might cause previously opti-
mal designs to underperform. An analytic model form is not possi-
ble for Load Scenario 3. For this loading case, the focus is on
understanding how using previously identified optimal solutions
to a different loading scenario (here the non-dominated solutions
associated with the analytic model for Load Scenario 2) can be used
to reduce computational expense. This is achieved by using these
non-dominated solutions as an initial starting point for the opti-
mization of the composite in Load Scenario 3.

3.1. Selecting an analytical and computational model

Critical loads are calculated by considering the loading scenario
and the analysis model being used. For the analytic models, critical
tensile loads are calculated assuming CLPT and analytic expres-
sions for Hashin’s failure criteria [30]:

1. Fiber failure in tension: Ft
f ¼ r11

Xt

� �2
þ s12

S

� �2.
2. Fiber failure in compression: Fc

f ¼ r11
Xc

� �2

3. Matrix failure in tension: Ft
m ¼ r22

Yt

� �2
þ s12

S

� �2
4. Matrix failure in compression: Fc

m ¼ r22
2S

� �2 þ s12
S

� �2þ
Yc
2S

� �2 � 1
h i

� r22
YC

r11, r22, and s12 indicate stress in the fiber direction, stress in
the transverse direction and shear stress for individual lamina,
respectively. For uniaxial tensile loading, only one component
out of stress and moment resultant is non-zero. Using Eq. (1), fail-
ure strains for each laminate are calculated. Since Hashin’s criteria
is a unidirectional failure criteria, the laminate strains are trans-
formed into each individual ply direction and the smallest critical
load value is selected to indicate first ply failure.

N
M

� �
¼ A B

B D

� �
e
j

h i
ð1Þ

Plate edges are assumed to be free. An exact solution for critical
buckling load is not available and most available solutions assume
the bending-extension matrix to be zero. A solution which consid-
ers a non-zero B matrix exists for anti-symmetric angle ply lami-
nates (�hn) and is used in this analysis to calculate critical
buckling loads. However, the terms A16, A26;B11, B12, B22, B66, D16

and D26 are still assumed to be zero. Eq. (2) [31] is used to calculate
the critical buckling load N0. Table 2 gives the variable descriptions
for Eq. (2).

N0 ¼ p2

R2b2ðm2 þ kn2R2Þ

�
D11m4 þ 2m2n2R2ðD12 þ 2D66Þ

þ D22n4R4 � 1
J1
½mJ2ðB16m2 þ 3B26n2R2Þ

þ nRJ3ð3B16m2 þ B26n2R2Þ�
	

ð2Þ

where

J1 ¼ ðA11m2 þ A66n2R2ÞðA66m2 þ A22n2R2Þ � ðA12 þ A66Þ2m2n2R2

J2 ¼ ðA11m2 þ A66n2R2ÞðB16m2 þ 3B26n2R2Þ
� ðA12 þ A66Þn2R2ð3B16m2 þ 3B26n2R2Þ

J3 ¼ ðA66m2 þ A22n2R2Þð3B16m2 þ B26n2R2Þ
� ðA12 þ A66Þn2R2ðB16m2 þ 3B26n2R2Þ
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Fig. 2. Research approach: a pathway toward solution exploration.
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Compression with Out-of-Plane 

Pressure 

Fig. 1. Load scenarios: description of load cases in this analysis.

Table 2
Analytic solution variables: terms within Eq. (2).

Variable Description

b Plate length
R ¼ a

b Plate aspect ratio
m Buckling mode shape parameter in length
n Buckling mode shape parameter in width
k Biaxial loading parameter (for uniaxial loads, k ¼ 0 and for uniform

biaxial loads, k ¼ 1)
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For plate buckling, the lowest buckling load does not typically
occur for m ¼ 1 and n ¼ 1 [32]. Thus the critical buckling load is
calculated for different combinations of m and n. Further, analyti-
cal solutions take only a fraction of the time required for FE
analysis.

The problem can be treated as one of plane stress for the FE
model, as the dimension of the plate in the thickness direction is
less than 1% of the in-plane dimensions. Load calculations and
stress analysis were carried out using commercial software, ABA-
QUS [30]. Since random ply laminates can have large values in
the associated bending-extending (B) matrix, this matrix cannot
be neglected. To model the system, 400 quadrilateral elements
with 8 nodes and reduced integration are used. Progressive dam-
age of the laminate under applied tension is checked by Hashin’s
failure criteria [13]. The tensile load is applied in small increments
until the value of any of the Hashin failure criteria in any ply
reaches 1. For compressive loads, buckling analysis is carried out
to determine the critical load resultant. All edges are assumed to
be simply supported.

3.2. Formulate and solve the optimization problems

Each composite is comprised of 8 plies. Fiber angle orientation
is constrained by a lower bound of �90 degrees, an upper bound
of 90 degrees, and can take on values in increments of 10 degrees.
Typical manufacturing constraints of symmetry and balance are
not considered, though direct enforcement is a topic of future
work. For each load scenario, two objective functions were consid-
ered where the loads are maximized. Mathematically, the opti-
mization problem is formulated as Eq. (3).

Maximize : k1ðXÞ; k2ðXÞ
Subject to : 8x 2 X ¼ fx1; x2; . . . ; x8g; �90 6 x 6 90
xi mod 10 ¼ 0

ð3Þ

In this equation, ki is an objective function and represents the load-
ing conditions that is being maximized. These objectives are a func-
tion of the design string X, representing the vector of orientation
angles for each ply. xi is the orientation angle of each layer.

The multi-objective optimization problem is solved using a
Multi-Objective Genetic Algorithm (MOGA) based on NSGA-II
[33]. This algorithm was chosen because of the multimodal nature
of the problem, the discrete nature of the design variables, and the
high cost of obtaining gradient information [3,29]. The initial pop-
ulation consisted of 80 design strings randomly created using the
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Fig. 3. Load Case 1 results: Pareto frontiers for finite element and analytic methods.
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available set of fiber orientation angles. Eighty percent of the pop-
ulation was crossed over using arithmetical crossover with a mix-
ing value of 0.4.

The mutation rate was fixed at 5%, and mutated designs were
created by randomly adding or subtracting 10 degrees to a single
ply. Parallel processing was implemented to reduce run time
[34,35]. To determine convergence, the hyper-volume of the Pareto
frontier was used. If three generations were completed in which
the hyper-volume did not change, the MOGA terminated.

3.3. Comparison of solutions

The final step of the approach is to compare the results pro-
duced by the computational FE and analytic models. Two major
comparisons are considered in this work. Solutions are compared
across model type to identify (1) if the Pareto optimal solutions
from the computational FE and analytic model exist in the same
region of the performance space, and (2) if similar trades in esti-
mated composite performance can be characterized by specific
fiber orientations in the various plies.

Such a study is necessary to determine if using different models
and load cases produce designs that are fundamentally similar
from a design configuration perspective. If configuration differ-
ences are found, understanding the nature of these differences will
provide insight into the design decisions (and tradeoffs) that must
be made when designing a composite panel. This paper seeks to
compare the optimal fiber orientation angles within each compos-
ite design across both the computational FE and analytic method
and the different load scenarios.
4. Results

It was expected that the results of each optimization would
show analytic solutions to be less accurate because of simplifica-
tions and assumptions associated with model development. How-
ever, an advantage of these models is that they took approximately
4% the computational run-time required to converge than the opti-
mization processes using the FE model. Since the objectives
defined in the problem formulation are to maximize the critical
loads, better solutions are found as the solution approaches the
upper right corner of each plot. The following subsections align
with the research approach described in Fig. 2.

4.1. Load Case 1: uniaxial tension and transverse buckling

The non-dominated Pareto solutions are displayed in Fig. 3 for
the objectives of uniaxial tension and transverse buckling. When
focus of the algorithm is on a single objective, such as in the Top
and Bottom Regions that represent the endpoints of the Pareto
frontiers, both models predict similar performances. However,
away from these endpoints the solutions from the analytic model
withstand larger buckling loads at a given tension than the solu-
tions obtained from the computational FE model.

In general, past research has shown that CLPT solutions tend to
over-predict critical buckling loads [36]. This can be partly
explained by the fact that the exact solution developed for anti-
symmetric laminates is used to calculate buckling loads for ran-
dom ply laminates [36]. Additionally, edges are considered to be
free in the analytic model, but are fixed in the computational FE
model, and CLPT conditions considered for the analytic solution
neglect the effect of transverse shear force.

It is expected that a composite with all fibers oriented at 0
degrees will have a large critical tensile load and small transverse
critical buckling load. The ply orientations for three regions in
Fig. 3 are listed in Table 3 for comparison. For each region of inter-
est, a solution is displayed for both the analytic and FE-based
model. As anticipated, designs with larger uniaxial tensile loads
consist primarily of 0 degree plies. While some plies are non-
zero, the orientation angles reflect a design variable value one
value away from a zero degree solution, as plies are allowed to
change in 10 degree increments.

Manufactured composites are commonly symmetric and bal-
anced. Without symmetry and balance constraints explicitly
encoded, the Pareto optimal solutions shown in Table 3 mostly sat-
isfy the balanced condition at a minimum. In nearly two-thirds of
the designs, the orientation angles of each of the first four plies fell
within ±10 degrees of its reflective ply.

Bending stress in a ply is directly proportional to the distance
from the mid-plane. Thus bending stress distribution in the lami-
nate is non-uniform with outer laminates subjected to higher
stress as compared to inner plies. Plies located near the center of
the composite do not contribute significantly to improved buckling
strength. However, when considering tensile loading, the stress
distribution in the laminate is uniform and thus orientation of
the center plies is as important as the outer plies. Reducing the ori-
entation angles of the inner plies is a common objective for critical
buckling and tensile loads. All the solutions, independent of the
region in Pareto frontier, tend to have center plies (ply 4 and 5 in
Table 3) at 0� ± 20�. The difference in performance of all the plies
arises from the difference in outer ply angles (ply 1 to ply 3 and
ply 6 to ply 8 in Table 3).

When maximizing transverse critical buckling loads, a compos-
ite design solution is expected to have all fibers oriented at 90
degrees. This also leads to a small critical tensile load. Optimal
designs from both models in the Bottom Region, however, do not
contain plies oriented at angles larger than ±50 degrees. This result
is unexpected and demonstrates the optimization challenge posed
when the number of possible ply angles is increased and the design
space becomes larger. Given a random initial population the
genetic search is able to find solutions close to the theoretical end-
point solutions. However, the combination of computational cost,
especially for the FE solution, and the definition of hypervolume
convergence criteria prevent these solutions from being found in
a computationally-efficient manner.

Noting that more non-dominated solutions were found when
using the analytic model, and that the evaluation of the analytic
model occurs at a reduced computational cost, it was hypothesized
that the analytic solutions could be used as an effective seed for the
FE mode. To explore this hypothesis, the Pareto optimal designs
from the analytic model were evaluated in the FE model. The shift



Table 3
Load Case 1 overview: sample Pareto optimal composite designs.

Region Analysis model Transverse buckling (lbf) Uniaxial tension (lbf) Ply (deg.)

1 2 3 4 5 6 7 8

Top FE 285.12 227806 0 10 0 �10 �10 0 0 10
Analytic 324.43 230366 �10 0 10 0 0 10 0 �10

Center FE 908.88 144204.4 �30 30 0 10 0 0 �30 30
Analytic 1072.7 147392.8 �40 20 �10 �20 �10 0 20 �40

Bottom FE 1199.46 82648 �40 40 40 10 �10 20 �40 40
Analytic 1193.69 78272.4 �40 40 �20 �20 �10 30 40 �50
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Fig. 5. Load Case 2 results: Pareto frontiers for finite element and analytic methods.
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in objective function values for the analytic frontier when the
designs are evaluated using the FE model is shown in Fig. 4(a).
Due to the limitations of CLPT, when the analytic solutions are
evaluated in the FE model there is a reduction in transverse buck-
ling (average percent error of 11%) and minor changes in uniaxial
tension (average percent error of 0.91%). The higher error for ana-
lytic buckling load comes from the assumptions associated with
Eq. (2).

Fig. 4(b) shows the comparison of the analytic frontier evalu-
ated using the FE model to the non-dominated solution identified
when running the MOGA on the FE model. There is strong compar-
ison amongst most of the frontier, indicating that both models con-
verge to similar ply angle solutions. More importantly, this result
supports the hypothesis that analytic solutions can be used to
inform the solution of the non-dominated set when an FE model
is used. Non-dominated analytic solutions can be found at a greatly
reduced computational expense, and these solutions can then be
evaluated in the FE model and used to seed the MOGA population
for the remainder of the search.

4.2. Load Case 2: uniaxial tension and biaxial buckling

To further explore the similarities and differences between the
analytic and the FE model a second load case of uniaxial tension
and biaxial buckling is evaluated. The buckling load is 10% of the
load in the transverse direction. Fig. 5 depicts the Pareto frontiers
generated by the FE and analytic method.

For large critical uniaxial tensile loads (the Top Region) the Par-
eto frontiers obtained from both models overlap. However, as the
critical biaxial buckling load increases, the analytic model over-
predicts the load. The analytic frontier predicts critical biaxial
buckling loads 400 lbf greater (38%) than the largest critical biaxial
buckling load generated by the FE model. Conversely, the FE model
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predicts larger (nearly 3000 lbf greater, or 1.3%) critical uniaxial
tensile loads. This larger prediction is due to the shear additional
stresses induced by the coupling terms that are better captured
by FE models, resulting in smaller critical load values than the ana-
lytic model.

The design solutions corresponding to a single solution from the
Top, Center, and Bottom regions of each model are reported in
Table 4. As seen in the previous study, designs with the highest
critical uniaxial tensile load have plies with orientations close, or
equal, to zero degrees. Again, the solutions from either model do
not contain ply solutions with orientation angles larger or smaller
than �50 degrees, even when biaxial buckling is maximized. There
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Table 4
Load Case 2 overview: sample Pareto optimal composite designs.

Region Analysis model Transverse buckling (lbf) Uniaxial tension (lbf) Ply (deg.)

1 2 3 4 5 6 7 8

Top FE 253.12 232742 0 0 0 �10 0 10 0 0
Analytic 349.48 230498.3 �10 10 10 �10 �10 10 10 �10

Center FE 726.06 157120.6 �30 20 10 �10 �10 0 �30 20
Analytic 826.79 169225.3 �30 10 �10 0 �10 10 10 �40

Bottom FE 1088.12 74654.6 �40 40 40 0 �10 30 �40 40
Analytic 1452.47 26488.9 40 50 50 50 �40 50 �40 50
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is symmetry, but to a lesser extent than those displayed in Table 3,
and balanced designs are not present. Comparing only the analytic
designs of Load Case 1 and Load Case 2, the Pareto optimal Load
Case 1 designs follow a symmetric pattern to a greater extent than
those of Load Case 2.

As discussed previously, the limitations of CLPT yield an ana-
lytic model known to over-predict buckling loads [36]. However,
when compared with the first load case of transverse buckling,
the over prediction associated with biaxial buckling appears much
larger, as shown in Fig. 6. Fig. 6(a) shows how, when the analytic
model solution are cross-evaluated in the FE model, the predicted
buckling and tension loads are reduced. The average biaxial buck-
ling error between the analytic result and the same design evalu-
ated in the FE model is 14.1% with a standard deviation of 16%.
For uniaxial tension, the average error is 4.95% and the standard
deviation 7%. These average standard errors are larger than the
errors associated with the first load case considered. This can be
attributed to a much smaller percentage of balanced laminates,
further diverging from the assumptions of Eq. (2).

While the designs may see greater average error when cross-
evaluated, a useful outcome is that designs with the largest critical
buckling load in the analytic solution have the largest critical buck-
ling load in the FE model. This is important because rank reversals
of buckling loads would suggest more significant theoretical limi-
tations of the analytic model than over-predicting performance.
A similar outcome was found for the uniaxial tensile load.

Building on the discussion from the first loading case studied,
the results presented in Fig. 6(b) compare the analytic solutions
after being evaluated in the FE model with the solutions obtained
from the MOGA when using the FE model. While the analytic
model may over-predict the performance of the composite solu-
tions for buckling (the best solution withstands approximately
1400 lbf), these solutions dominate the solutions found when opti-
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mizing with the FE model. Elsewhere in the space there is useful
similarity between predicted performances, except in the regions
where the buckling load is between 700 and 1000 lbf. Despite
the differences in this region of the performance space, the MOGA
using the analytic model identified solutions that would be non-
dominated with respect to the solutions generated using the FE
model. These results further support the hypothesis that an ana-
lytic solution can be used as an effective starting point for a MOGA
using the FE model, regardless of what load scenario is being
considered.

4.3. Comparing the analytic solutions for Load Case 1 and Load Case 2

If analytic solutions are to be used as an effective seeding strat-
egy, they offer greater value to the optimization algorithm if they
are robust to load scenario definition. Fig. 7 shows the results of
cross-evaluating the analytic model solutions across load cases.
As uniaxial tension is considered in both load cases, the values
for this axis remain constant.

When the results from Load Case 1 are evaluated under biaxial
buckling, there is a reduction in critical buckling load. A similar,
but opposite trend is observed when Pareto optimal designs pro-
duced for biaxial buckling load are cross-evaluated under trans-
verse buckling. The largest percent difference in buckling load
occurs in the middle of the frontier, rather than at the endpoints.
Despite these differences, the two results can largely be used inter-
changeably with minimal variation in predicted performance.

4.4. Load Case 3: uniaxial tension and biaxial buckling with out-of-
plane pressure

Previous work has demonstrated that computational run-time
can be reduced and solution quality can be improved when a more
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effective initial population is provided [37]. The results introduced
in the previous sections highlight the potential for solutions from
the analytic model to serve as a surrogate initial population for
the FE model. The limitations associated with some of the CLPT for-
mulations do not hinder the analysis of composites with large uni-
axial tensile loads. However, when analyzing designs with larger
buckling loads, the analytic model suffers from lower accuracy
and tends to over predict the critical buckling load. With these con-
clusions in mind, a more realistic load case is implemented in this
section in which biaxial buckling with out-of-plane pressure and
uniaxial tension are considered.

When considering an aircraft fuselage, a pressure differential
exists because the inside of the fuselage is pressurized at atmo-
spheric pressure and the outside pressure is comparably very
low. This out-of-plane differential pressure acts on a small section
of the fuselage. When developing the model for analysis, a two-
step loading process is used where the composite is first subjected
to the out-of-plane pressure and then to biaxial compression. Due
to the relatively high pressure and thinness of the laminate, deflec-
tion is very large and conventional CLPT assumptions are not valid.

A valid and accurate analytic model is extremely difficult to
develop for such a two-step loading process. As a result, only a
computational FE model is able to determine the critical loads
for uniaxial tension and biaxial buckling with out-of-plane pres-
sure. Typical differential pressures acting on a fuselage during
flight vary from 11 to 13 psi.

The most common laminate used in fuselage construction is a
16 ply laminate with a single ply thickness of 0.01 in. [2]. However,
increasing the number of plies increases the number of design vari-
ables considered and the computational cost of the optimization. It
is expected that the ply orientation trends in terms of Pareto fron-
tier location remain consistent for multilayered laminates. There-
fore, an 8 ply laminate is considered and the pressure is scaled to
avoid large displacements. A constant uniform pressure of 1.4 psi
is assumed.

As no reliable analytic model for biaxial buckling with out-
of-plane pressure exists, Fig. 8 depicts the set of non-dominated
Pareto solutions associated with the FE model. The presence of
out-of-plane pressure increases the critical buckling load of the
composite, which is counterintuitive to the general notion that
an increase in loading decreases material strength. This is a
generic phenomenon applicable to thin structures subjected to
out-of-plane pressure and axial compression, and was reported
experimentally by Lo et al. [38]. This behavior was also studied
using FE methods for composite cylinders with cutouts by Tafreshi
[39] and Hilburger [40]. The strengthening effect is a result of the
out-of-plane pressure reducing the initial geometric non-linearity,
which increases the critical buckling load. However, at higher pres-
sures the deformation goes beyond repairing the non-linearity and
causes the critical buckling load to decrease.

Generating the frontier presented in Fig. 8 required 5821 func-
tion evaluations. An initial set of random solutions was used as a
starting population and the algorithm converged after 38 genera-
tions. When developing an optimal composite, designers may not
have the time to allow a MOGA to complete the number of function
evaluations required to produce a set of Pareto optimal designs.
This is a greater concern as the set of allowed ply orientation
angles increases. For example, an 8 ply composite with a set of
10 allowable angles yields a design space consisting of 1E + 08
combinations. If the set of allowable angles is increased to 20,
the design space is increased by a factor of 256, yielding
2.56E + 10 possible combinations.

A design configuration associated with the Top, Center, and
Bottom Regions of Fig. 8 are represented in Table 5. Unlike the



Table 5
Load Case 3 overview: sample Pareto optimal composite designs.

Analysis Region Buckling with pressure (lbf) Uniaxial tension (lbf) Ply (deg.)

1 2 3 4 5 6 7 8

Finite element Top 73.998 231256 0 0 10 �10 0 0 0 0
Center 3847.4 154086 �20 10 50 0 10 10 �20 30
Bottom 6298.8 114529 �20 0 60 10 20 10 �30 70
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Fig. 9. Effect of seeding: analytic solution used as seed in Load Case 3.
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previous load cases, the design with the smallest critical uniaxial
tensile load has ply orientation angles as large as 70�. The smallest
biaxial buckling with pressure design is comprised of plies with 0�
orientation angles, except for two inner plies. In comparison with
previous load cases, solutions to Load Case 3 barely show degrees
of balance and ply symmetry. From a buckling perspective, the
lowest buckling force is tolerated by a composite with ply orienta-
tions of 0 degrees, while the highest buckling force is achieved by
ply orientation angles of ±45 degrees. For Load Case 3 the highest
buckling performance is achieved by 0�/90� plies, producing design
configurations different from those of Load Case 1 and Load Case 2.
This difference is significant when increasing critical buckling
loads only. In terms of critical tensile loads, all three load cases
show very similar strengths as reported in Table 3–5.

When a designer has limited information about the nature of
the solution space, there are advantages to using a random initial
population in a genetic search. However, a more informed set of
initial solutions can reduce the computational expense of the opti-
mization and lead to improved solution quality. To demonstrate
this, the design configurations obtained from the analytic Pareto
frontier associated with Load Case 2 is used as the initial popula-
tion for Load Case 3. Recall that no analytical solution could be
obtained for Load Case 3, and Load Case 2 and 3 represent a more
common loading scenario.

The computational time associated with producing the analytic
Pareto frontier for Load Case 2 was less than 90 min. The non-
dominated points from the analytic biaxial buckling and uniaxial
tension frontier were then used as the initial seed for the FE Load
Case 3 model. The total runtime of the simulation was 20 h on a
4-core parallel processing cluster. To generate the Pareto frontier
shown in Fig. 9, 1,409 functional evaluations were required. This
is a nearly 80% reduction in computational run-time. From a solu-
tion quality perspective, the small differences between the two
frontiers are attributed to the stochastic nature of a MOGA. Thus,
Fig. 9 supports the hypothesis of using analytic solutions as a seed
solution, even when the loading conditions change.
5. Discussion

In addition to exploring whether analytic models could be used
as an effective seed for a FE model, a secondary objective of this
work was to explore the regions of the performance space popu-
lated by different analysis models while considering multiple load-
ing scenarios. Creating analytical solutions for these problems
often require assumptions or simplifications to be made to achieve
closed form solutions. Yet, these assumptions and simplifications
often reduce the accuracy of the prediction. This is evident in the
critical buckling load analysis, as the analytical solution for a fully
coupled composite plate (populated B and D matrix) does not exist.
The optimization results demonstrated that for the loading cases
considered, the buckling solutions were drastically different for
the two different models. Additionally, Load Case 3 introduced a
realistic loading scenario for an aircraft fuselage panel where an
analytic solution was not available. Because the deflection of the
panel is relatively large, conventional CLPT assumptions do not
hold.

Composite components also see multiple loading conditions
while in service. This introduces challenges from a design problem
formulation perspective, and the optimal design for one loading
scenario may not satisfy the requirements for another. Based on
critical buckling and tensile load values reported in the previous
sections, solutions from Load Case 1 and 2 were found to be inter-
changeable. This result is further supported by Figs. 10 and 11,
which show that the optimum orientations for Load Case 1 and
Load Case 2 are almost identical. Figs. 10–12 depict parallel coordi-
nate plots of the Pareto optimal designs for the FE model for Load
Case 1, Load Case 2 and Load Case 3, respectively.

The designs depicted in Figs. 10 and 11 appear to follow a sym-
metric and balanced pattern. This behavior is not apparent in
Fig. 12. The addition of pressure results in balanced and symmetric
laminates at lower buckling loads. To achieve high critical buckling
loads, ply orientations are not balanced or symmetric so that the
buckling of the panel can be counteracted. Therefore designs for
Load Case 3 require a different laminate configuration compared
to the first two loading cases.

The solutions to the three load cases also demonstrate that per-
formance may be better achieved when a finer granularity of orien-
tation angles are considered. Much of the current literature limits
the possible orientation angles to a very small subset. This limita-
tion may reduce manufacturing complexity but can also artificially
constrain system performance. As the design space becomes larger
when more angle possibilities are considered, so will the computa-
tional cost associated with solving the optimization problem. In
this work, running a MOGA with orientation angles considered at
10 degree intervals and a random initial population took 4 days
to produce a solution when using a computational FE model.

When an analytical model could be formulated, the process of
finding solutions was 50–60 times faster than the process for find-
ing solutions using a computational FE model. This outcome is sig-
nificant because the results presented in the previous section
demonstrate that analytical solutions are a more effective starting
population than randomly generated initial designs. The computa-
tional savings achieved by seeding the initial population with these



Ply1 Ply2 Ply3 Ply4 Ply5 Ply6 Ply7 Ply8
−40

−30

−20

−10

0

10

20

30

40

50

60

A
ng

le

300

400

500

600

700

800

900

1000

1100

BucklingLoad
(lbf)

Ply1 Ply2 Ply3 Ply4 Ply5 Ply6 Ply7 Ply8
−40

−30

−20

−10

0

10

20

30

40

50

60

A
ng

le

1

1.2

1.4

1.6

1.8

2

2.2
x 105

TensileLoad
(lbf)

Fig. 10. Parallel coordinates plot for Load Case 1: influence of ply angles of Pareto frontier on the response of laminate.
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Fig. 11. Parallel coordinates plot for Load Case 2: influence of ply angles of Pareto frontier on the response of laminate.
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analytical solutions will allow more complex composite optimiza-
tion problems to be considered in future work. Further, using these
solutions provided benefits even when the analytical model did not
present a complete match to the loading scenario actually encoun-
tered by the composite. Seeding the algorithm with a solution for a
similar analytic problem yielded a solution in less than one day, an
80% decrease in computational time.

6. Conclusion and future work

Analytical models can often be overlooked because of the sim-
plifications required to arrive at a viable closed-form solution. Also,
it is not possible to model all complex loading scenarios with a
closed-form analytical model. In this work, a multi-objective
genetic algorithm was implemented to optimize the performance
of an 8-ply composite laminate for three different load cases. The
design variables corresponded to the ply orientation angles, whose
acceptable values were defined by a set of angles ranged between
±90 degrees in 10 degree intervals. Two different modeling
approaches, analytic and computational FE models, were used to
solve for the critical load values.

The simulations run in this work demonstrate the continued
usefulness of analytic models, particularly in an optimization con-
text. For a subset of loading scenarios and performance objectives
the predicted performance of the composite had only slight differ-
ences when comparing the outcomes of analytical and FE models.
As the problem expanded to multiple load cases, the optimum
solution was found to be different, but simplified load case solu-
tions did show some overlap with solutions from more complex
loading cases. In loading scenarios where results match closely
between the analytical and FE model, significant reductions in
computational cost can be achieved using the analytical model.

More importantly, this paper demonstrates that while complex
loading cases will have a unique set of solutions, using results from
simplified loading scenarios as a seed can lead to reduced compu-
tational cost and improved solution quality. Using simplified
model solution sets as a seed led to a reduction in run-time of
80% for some of the studies in this work. Additionally, regions of
the solution space where configurations are identical between
loading cases can be used to identify composite panel solutions
that have a greater level of robustness to changes in loading while
the composite is in service. This is important for parts that are
expected to see a wide variety of loads.

As increased computational power becomes more ubiquitous it
is less burdensome to use complex computational FE models. Yet,
it is likely that the design space of future composite design prob-
lems will be significantly larger than the one considered in this
paper. As optimization problems are formulated around compos-
ites consisting of a larger number of plies and acceptable orienta-
tion angles, the difficulty of effectively searching such a space
can increase exponentially. Future work in this area could explore
how knowledge about composite panel design problems could be
further leveraged to decrease the computational cost associated
with optimization. While it may be necessary to use FE models
for complex loading scenarios, different constraints on the orienta-
tion angles of the plies could reduce the size of the design space
that must be explored.

With the exception of biaxial buckling with out-of-plane pres-
sure the non-dominated solutions found in this work followed a
symmetric and balanced pattern. Enforcing a symmetric and/or
balanced constraint on feasible designs could reduce computa-
tional run times and reinforce the current manufacturing practices
associated with composite design. Other work could explore if a
basic set of simplified loading cases could be identified to serve
as effective seeds for more complicated loading scenarios.
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