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ABSTRACT 
The four Ps of the Marketing Mix are defined as Product, Price, 

Place and Promotion. The last forty years of engineering design 

research has seen an increased incorporation of preference into 

the design process in response to meeting the demands of each 

‘P’. This incorporation began with surrogates of preference in 

Design for Product problem formulations where an objective 

(such as minimizing weight, for example) represented a firm’s 

desire to reduce cost and maximize profit. As our community 

progressed toward Design for Price problem formulations, we 

began to represent preferences both of the designer – using 

decision theory techniques – and of the customer – often in the 

form of random utility models that then informed models of 

demand. The Design for Market System special session was 

created in response to our transition to Design for Place, though 

much work remains to be done. The objective of this paper is to 

highlight the advancements of the community through the first 

two P’s (Product and Price) while also highlighting the need, and 

exciting research opportunities, that exist as we transition to 

Design for Place and Design for Promotion. 

 

INTRODUCTION 
Over the last four decades, there has been an increased focus on 

incorporating customer motivation into engineering decisions. 

Not surprisingly, the methodological development in this area by 

the engineering design community has followed a trajectory 

from the product to the customer; i.e., the product is abstracted 

in terms of its form and function, which in turn may be abstracted 

in terms of descriptors of customers’ propensity to purchase. As 

will be showcased throughout the paper, research 

accomplishments have opened multiple avenues for broadening 

the socioeconomic impact of engineering design as a discipline. 

 

In this paper, we review the research accomplishments in the area 

of market-based engineering design from the perspective of the 

Marketing Mix as introduced by McCarthy [1]. These are 

commonly known as the Four Ps of Marketing: Product, Price, 

Place, and Promotion. We posit that as the emphasis on 

integrating the engineering and marketing disciplines has grown 

over time, the research contributions to this area from the 

engineering design community have implicitly progressed 

through the Marketing Mix, beginning with design of the product 

itself and gradually adding provisions to accommodate price, 

place, and promotion in engineering design problem 

formulations. We further intend to demonstrate that explicitly 

relating available design methodologies to elements of the 

Marketing Mix serves not only to increase the efficacy of 

available market-based design methodologies, but also reveals 

several compelling avenues for future research activity. 

 

DESIGN FOR PRODUCT 
Design for Product is the foundational methodological 

framework for market-based product design. A Design for 

Product framework is typically focused on the interaction 

between system design parameters (x), system attributes (a), the 

cost of manufacturing and life cycle costs (C), and the exogenous 

variables (y). While it is often the goal of the firm to maximize 

the profitability of the product, the research efforts proposed are 

focused on navigating the tradeoffs that occur at the level of 

system attributes. In these approaches is often assumed that 

demand for a product exists in forms such as a procurement 

contract awarded by the military to design and build an aircraft 

or set of satisficing specifications have been established in a 

requirements document [2]. Demand is therefore assumed to be 

satisfied when requirements are met and corporate preferences 

drive subsequent design decisions to reduce costs and thereby 

maximize profit.  

 

In keeping with the iterative nature of design that is well 

established in the literature, design automation techniques often 
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use classical nonlinear optimization principles to create design 

problems with an objective function that is subject to a set of 

constraints [3,4]. Research efforts focus either on improving 

computational efficiency or managing the complexity that is 

often associated with complex engineered systems. This has led 

to advancements in the areas of both multiobjective and 

multidisciplinary optimization techniques.  

 

While the validity of a multiobjective problem formulation has 

been challenged by a segment of the engineering design 

community because it does not allow for the selection of a single 

design configuration, it has been successfully used as a means of 

exploring the problem’s tradespace [5–8] when a proper value 

function [9,10] cannot be initially created. Navigating this 

tradespace allows for insights to be generated about the system 

design (x) configuration that should be adopted [11–13]. 

 

Multidisciplinary design optimization (MDO) methods are 

commonly formulated around the assumption that designers act 

rationally [14], which aligns philosophically with market-based 

design in that the objective function is in some sense a surrogate 

for value. As the system being designed is complex, designers 

must choose whether to adopt a monolithic or distributed system 

architecture [15]. Rather than passing information between 

disciplines, a hierarchical approach can be created where top 

level design targets are passed to lower levels of the modeling 

hierarchy [16,17]. The upper level of this hierarchy modifies the 

passed down targets so that a feasible design can be realized.  

 

Work integrating utility and preference in Design for Product 

problem formulations focused on modeling designer’s 

(engineer’s) utility for different engineering options [18,19]. 

However, a limitation of this formulation for market-driven 

products is that consumer preferences are not explicitly modeled.  

The behavioral model for demand is a combination of the 

design’s conformance to the requirements document and its 

performance on corporate preferences embedded in objective 

function formulation – for example, minimizing weight reduces 

costs, which in turn leads to a larger potential profit. 

 

This limitation motivated researchers in both the marketing and 

engineering communities to explore the connections between 

design decisions and consumer preference and utility. The next 

steps in this avenue of research marked a transition in market-

based engineering design research from Design for Product to 

Design for Price. 

 

DESIGN FOR PRICE 
Initial investigations linking preference and demand as a means 

of generating new product solutions trace back to publications in 

the marketing research community as early as 1974. Shocker and 

Srinivasan [20] proposed an approach that used consumer 

product perceptions and preferences for existing alternatives as 

a means for generating new product ideas. This approach 

followed four steps: 

 

1) Identify the relevant product-market 

2) Represent these brands (products) abstractly 

3) Provide a behavioral model consistent with user buying 

choices among existing products – to be used in 

predicting how potential purchases will react to 

nonexistent alternatives 

4) Use the model (3) in implementing search to find or 

come close to finding that location or set of locations 

for new products which best achieve objectives 

specified by the firm 

 

Customer choice of an alternative was tied to an ideal point-

product distance model, and a design problem was formulated to 

identify a single optimal (or at least improved) product. It should 

also be noted that Shocker and Srinivasan [20] highlighted the 

challenges of defining an appropriate set of objectives for the 

fourth step of their approach, stating that: 

 

“Ideally, search should be guided by a 

criterion such as net present value of 

incremental profits. . . . The viability of such a 

criterion depends upon the existence of means 

for predicting both incremental revenues and 

costs as functions both of time and of location 

within feasible regions of the attribute space. 

Such projections may be difficult to make 

validly.” 

 

Another early effort extended problem formulation from a single 

product to a line of products as introduced by Green and Krieger 

[21]. Rather than using a distance metric to identify the optimal 

new product they built on previous problem formulations 

involving buyer’s welfare [22] and seller’s welfare [23]. The 

Design for Price framework is distinguished from the Design 

for Product framework by including the product’s price in the 

design problem formulation. It is typically included for use 

within a market simulation engine that has been integrated into 

the design framework for estimating product demand and, 

ultimately, estimating the profit generated by product sales. 

 

The integration of market-demand models in product and 

product line engineering design problems started with conjoint 

analysis [24] and linear demand models [25,26]. In the S-model, 

product demand (nj) is determined using a linear function of the 

pseudo price elasticity of demand (K), the customer-perceived 

value (Vj), and price (Pj) as shown in Equation 1. 

 

)( jjj PVKn     (1) 

 

Value is quantified by combining a product’s baseline value (V0) 

with non-compensatory (vi) and compensatory (Vj) 

specifications, as in Equation 2. 
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However, it is the framework for Decision-Based Design (DBD) 

[27] proposed by George Hazelrigg that most significantly, and 

comprehensively, formulated market-driven product design 

problems in an engineering context [28]. As shown in Figure 1, 

solution quality corresponds to the alternative with the highest 

possible value. Value is assigned to each product alternative by a 

von Neumann-Morgenstern utility [29] so that rational 

engineering design decisions can be made, and an iterative 

process is followed to find alternatives with greater value. 

 
Figure 1. A framework for decision-based engineering 

design (from [28]) 

 

In describing his framework, Hazelrigg identifies the System 

design (x) and Exogenous variables (y) as having no particular 

meaning to potential customers. While he acknowledges that 

these variables do influence manufacturing and life cycle costs, 

he argues that it is the system attributes that most directly drive 

demand. Therefore, system attributes (a), product price (P) and 

time (t) are the key drivers of demand. This creates an iterative 

sub-optimization process where once the system attributes have 

been established, price must be determined in such a way that the 

utility (u) of an alternative is maximized. 

 

Hazelrigg’s DBD framework spawned at least two distinctly 

different avenues of research, each defined by the decision on 

which they focused. The first focused on the designer’s decision-

making process. Work in this area included exploratory studies 

of product development decision making [30], exposition on the 

application of normative decision analysis in the engineering 

design process [31] and methods for elicitation and application 

of designer preferences in engineering decision-making [32,33]. 

Although this was a substantial body of work in itself, the 

majority of the work occurred in the second avenue in which the 

customer’s decision-making process was the focal point. In this 

work, models of customer purchase behavior were exercised to 

estimate products’ sales volumes and market-bearing prices. 

These models, combined with real-time cost estimating models, 

enabled development of the class of product design frameworks 

classified in our work as Design for Price frameworks. Design 

for Price frameworks are similar in nature to the MDO 

frameworks created for Design for Product problem 

formulations, as they include disciplines associated with 

engineering performance and market simulation, allowing for 

the estimation of price. When cost models are included, perhaps 

as another discipline, the framework is extensible beyond Design 

for Price to Design for Profit. 

 

Mistree and Marston [34] developed one of the earliest Design 

for Price frameworks, allowing a product alternative to be 

improved with respect to the net present value of profit. Li and 

Azarm [35] furthered this formulation by using conjoint analysis 

and regression to estimate utility functions at the individual 

level, and by considering net present values of share and profit.   

 

The framework of Wassenaar and Chen [36] could be considered 

the archetype for applying a random utility model in a Design for 

Price framework. Numerous extensions of this framework were 

then demonstrated, including decomposition of the optimization 

problem in the engineering domain [37–39] or in the marketing 

domain [40,41], design of entire product families rather than 

single products [42–45], and using revealed preference data to 

estimate the demand model [44–46].  A wide variety of market 

demand models have been used, including models derived from 

traditional econometric methods [35,42–44,47,48] and random 

utility models spanning from multinomial logit [36,38,39,46] 

through generalized extreme value [41,45] to mixed logit 

[49,50]. 

 

These works further cemented the socioeconomic impact of 

engineering design as a discipline. Researchers within the 

engineering design community then began to ask questions about 

how assumptions regarding choice of model(s) and problem 

setup influenced engineering design decisions and the validity of 

the predicted performance outcome of an engineering design 

activity. In response to this increased interest in Design for Price 

problems, the Design for Market Systems special session was 

created in 2008 as part of the program fielded by the ASME 

Design Automation Conference.  

 

DESIGN FOR PRICE – ACCOMPLISHMENTS WITHIN 
THE DESIGN FOR MARKET SYSTEMS SESSION 
To understand the research progress made in understanding, 

formulating, and solving Design for Price problems, we 

collected every paper published under the Design for Market 

Systems heading from 2008-2016. The research objectives and 

contribution areas of these papers were then mapped to key 

elements of Hazelrigg’s DBD framework. This was done to 

identify what assumptions regarding problem formulation were 

being challenged and to identify which aspects of the framework 

were receiving greater amounts of research attention. In line with 

Figure 1, the following categories will be discussed: 

 Linking system design (x) and attributes (a) to the 

demand model (q) 

 Cost of manufacture and other life cycle costs (C) 

 Form of demand model (q) 

 Corporate preferences 

 Optimization of product concept 

 Exogenous variables (y) 
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Linking system design and system attributes to the demand 

model 

Our review of the literature found that there has been only a small 

subset of papers that directly address the link between system 

design variables, system attributes and the demand model. Much 

of the work surveyed assumes that the technical attributes which 

define the form and function of the design are well established, 

and place a more significant concern on the form of the demand 

model or the type of customer choice/rating information used to 

estimate the demand model. Two significant topics covered 

under this heading relate to 1) the challenge of visually 

representing the form of the product to obtain some type of 

customer rating, or 2) understanding the relationship between 

different product attributes so that an appropriate demand model 

can be constructed.     

 

Visual conjoint analysis has been proposed and fielded in [51–

53] to understand the interaction between product form and 

customer preference. These works explored how a shape can be 

parameterized and presented to a series of respondents so that 

preference structure could be estimated using a choice-based 

conjoint analysis. This represented a significant departure from 

the standard text-based surveys where product levels represent a 

feature inclusion or some qualitative/quantitative measure of 

system performance. An example choice-based question used in 

[53] is shown in Figure 2. Visual elements of the product were 

also considered in [54,55] by studying respondent perception of 

a vehicle’s front-end. Conjoint analysis was used rather than 

choice-based conjoint, and preferences were established from 

direct ratings on a scale and pairwise comparisons. 

 

 
Figure 2. Example visual choice-based conjoint question. 

The three attributes considered were the knife’s slope, 

edge and end. (from [53]) 

 

We also include the hierarchical choice model approach 

presented in [56,57] in this section because of the larger 

ramifications implied by its hierarchical structure. As shown in 

Figure 3, as taken from [57], a hierarchical structure was needed 

to implement an all-at-once model estimation linking the 

qualitative attributes (often a rating) used by respondents to 

choose a product, and the quantitative attributes associated with 

engineering design decisions. This approach was presented in an 

enterprise design context as the authors argued that detailed 

design decisions could be made for the entire system, or a single 

sub-system. While this work combined models of cost and 

product configuration, decisions were made around calculations 

of expected profit or net revenue. 

 

 
Figure 3. All-at-Once Hierarchical Choice Model 

Estimation (from [57]). Engineering variables are the 

vehicle dimensions at the bottom of the figure. 

 

Other works of note that fall under this category are the 

exploration of convergent products in [58] that studied how to 

integrate design solutions from existing product categories to 

handle the functionality couplings that needed to be addressed. 

Additionally, work in [59] used three different machine learning 

methods on 5 years’ worth of data associated with residential 

solar photovoltaic installations in a California market to identify 

the critical technical attributes that would drive the engineering 

design decisions. From a set of 34 technical attributes pulled 

from solar panel specification sheets, it was found that 3 of the 

attributes were critical in influencing demand.  

 

Overall, most of the papers reviewed from the Design for Market 

Systems session assume that system attributes are well defined 

and that it is possible to define the corresponding combination of 

system design variables. While the statistical significance of 

system attributes can be challenged in model fitting (as discussed 

in the Form of Demand Model section), there is usually minimal 

discussion about how system attributes are selected and whether 

they are the parameters actually driving respondent choice (it is 

assumed that, at a minimum, a subset of the modeled system 

attributes influence choice in a meaningful way) without 

discussing the manner in which the system is purchased. We 

revisit, and challenge this assumption, when discussing Design 

for Place and Design for Promotion later in the paper. 

 

Cost of manufacture and other life cycle costs (C) 

System design and system attribute definition relates to the 

engineering aspect of the problem rather than the marketing 

domain. Aligned with the definition of the engineering space is 

the consideration of manufacturing and lifecycle costs. All 

papers that consider the optimization of net present value for a 

product must define some cost structure in a Design for Price 

problem. However, it is the work that extends the problem 

formulation to a product line or product family problem that is 

the focus of this subsection.  
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A product family deployment problem was introduced in [60] to 

explore compromises that must be made between decisions 

related to required engineering resources, product lineup 

configuration, sequence of product rollout and profit. 

Commonality decisions were incorporated in a combinatorial 

optimization problem to define the modules selected for the 

product line. Commonality is treated as a surrogate for cost 

savings in [61] and is used to establish a competing objective 

against market share for a product line design problem. The 

motivation behind this problem formulation was to explore the 

relationship between cost, market share and the number of 

product variants offered by the firm. A change in logit of 

preference share was used to determine the number of products 

that should be offered and both bottom-up and top-down 

platforming approaches were investigated. To support top-down 

product family design an activity-based costing method was 

presented in [62]. 

 

Finally, product architecture decisions were linked with 

decisions related to supply chain configuration in [63]. 

Outcomes from this approach combined commonality strategy 

with manufacturing site selection for module production, 

assembly and distribution. Such papers introduce an important 

element to the Marketing Mix discussion. The application of 

random utility models became more prevalent in market systems 

research as a means of representing the heterogeneity present in 

most product markets. Without an adequate consideration of 

cost, however, an optimization algorithm trying to maximize an 

objective of market share or revenue will increase the number of 

variants fielded without check. The incorporation of cost in a 

Design for Price problem provides a stepping stone for the 

consideration of retail channel structure, as discussed in Design 

for Place. 

 

Form of demand model 

As described by Shocker and Srinivasan [20], the third step of 

their framework was to provide a behavioral model consistent 

with how people make their purchasing decisions. When 

considering Design for Price problem formulations, research into 

demand model form extends from data origin (where the data 

comes from and what survey instrument is used) to how 

advanced market research models provide different solutions to 

product design problems. The goal of this section is to highlight 

the scope of these efforts and demonstrate the quantity of 

engineering design research that has occurred in this space.  

 

Before a model form can be selected, data must be collected so 

that model coefficients can be estimated. Research into data 

collection techniques include the development of an algorithm 

that allows for an optimal design of experiment to be created for 

human appraisal questions to avoid respondent fatigue [64] and 

development of an approach similar to Efficient Global 

Optimization [65] that uses feedback from prior responses to 

create the next set of questions [67]. A query algorithm that is 

capable of updating the user preference model during the data 

collection phase has also been introduced [68], which the added 

capability of reducing survey length by querying preferred 

designs from previous users with a similar preference structure. 

 

Collection and fusion of survey data obtained directly from 

respondents is found in [66–68]. Modeling of customer interests 

and choice behavior at different stages of product design and 

development was studied in [66]. The results of this study 

indicated that a Decision Tree algorithm was more effective at 

predicting attribute relevance while Discrete Choice Analysis 

was more suited for estimating the share of an alternative. The 

unique nature of the data associated with Customer Satisfaction 

Surveys was explored in [67]. This study found that an integrated 

mixed logit approach was most effective because of the lack of 

choice set information, the use of subjective ratings for product 

attributes, and collinearity amongst attributes. Further, they 

found that Customer Satisfaction Surveys often violated the first 

rule of Shocker and Srinivasan’s [20] framework in that the 

products captured in the survey (real products on the market) 

often did not represent a comprehensive enough range for each 

product attribute. The fusion of data from van Westendorp 

studies [69] and conjoint data was explored in [68], leading to an 

ability to use multinomial logit analysis and the development of 

a statistical test to measure the fusibility of disparate data sets.  

 

After data is collected, the next step is choosing the form of the 

demand model to use. This has resulted in two major variations 

of effort. Those that explore the functional form and choice of 

demand model used, and research efforts that incorporate usage 

context into the form of the model. 

 

Ramifications of model form for the vehicle automotive market 

were explored in [70]. Two different forms were considered: 

horizontal differentiation and conventional model forms aligned 

for vertical differentiation. Horizontal differentiation occurs 

when consumers disagree about the relative ordering of products 

(or product attribute levels), while vertical differentiation occurs 

when agreement aligns with the relative ordering of products (or 

attribute levels) but there is disagreement on willingness to pay. 

Model evaluation methods used in this work include fit, 

interpretability, predictive validity, and plausibility, allowing for 

only relative assessments of model quality. In stating their 

conclusions, the authors of [70] suggest the consideration of a 

two-stage decision process modeled on a consider-then-choose 

formulation that is further explored in [71]. Vehicle data was 

further used to explore the effectiveness of different discrete 

choice model forms in [72]. This study used three years of 

revealed preference data (2004-2006) and estimated multinomial 

logit models using an exhaustive combinatorial set of utility 

covariates. When simulating these models on the next year of 

data (2007), it was found that predictive capability was driven 

more by the presence of utility covariates and less to model form. 

Finally, the work in [73] was driven by the need to compare the 

relative performance (in terms of model fitness) and predictive 

ability of two  heterogeneous market models (hierarchical Bayes 

mixed logit and latent class multinomial logit). The structure of 

estimated heterogeneous preferences from each model were 
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explored to investigate why differences were observed both in 

model estimation and in the product solutions when a line of 

products was optimized in a share of preference problem. It was 

found that the continuous representation of heterogeneity offered 

by the hierarchical Bayes mixed logit model led to better model 

fitness, predictive ability, and reduced design error due to its 

larger degree of freedom. 

 

Choice model form has also been manipulated by incorporating 

usage context [74,75]. The argument made in these works was 

that when dealing with an engineered system, an overreliance on 

marketing and demographic attributes would lead to incorrect 

predictions of the attributes that actually drive choice. Product 

performance is modeled as a function of the design and the 

context in which it is being used. Usage context is then 

incorporated into a respondent’s utility function, allowing for 

market segmentation to be considered.  

  

Network theory has also been used to understand the impact of a 

social network on new product adoption rates [76]. A three stage 

process was used to integrate the peer effect associated with a 

social network with the results from a discrete choice analysis. 

Further advancements of network analysis has led to the study  

of interactions between consideration behaviors by creating 

associations between product attributes and customer 

demographics [77], as shown in Figure 4.  

 

 
Figure 4. An illustrative example of creating a network  

of vehicle associations to influence choice behavior  

(from [77]) 

 

Finally, there has been a body of work that has explored the 

modeling of choice by transitioning away from traditional survey 

techniques. This began with the use of User Generated Content 

available on the web [78] – such as blogs, social networking 

interactions and online reviews – and extended to various 

machine learning approaches capable of mining transactional 

data for hidden purchasing patterns. This use of data mining has 

been used to: 

 combine customer preference and technological 

obsolescence [79],  

 create new choice modeling scenarios  [80],   

 explore the viability of Twitter as s source for product 

opinions that could inform models describing 

purchasing decisions [81], 

 employ sparse coding and sparse restricted Boltzmann 

machines to yield high-accuracy predictions of 

preference [82], 

 and, create market segments from online reviews 

focused on individual product attributes (such as zoom 

on a camera) and to identify attribute important 

rankings [83]. 

 

It is this transition toward an online environment where 

customers have access to data, reviews, and a selection of 

choices that we feel most significantly offer opportunities to 

extend the Design for Price framework to a Design for Place 

framework, as discussed later in the paper. 

 

Corporate preferences  

Moving toward the iterative nature of Hazelrigg’s DBD 

framework, there is a direct relationship between corporate 

preference and the objective function used in a market 

simulation. While profit or revenue are often used in single 

objective optimization problem formulations, multiobjective 

formulations have been introduced that trade market share with 

profit/revenue, for example.  

 

Two papers specifically stand out from the literature review. In 

[84] the relationship between changes in technology, 

competition, preference, and regulation is explored. This 

multiobjective formulation considers the tradeoff between a 

business objective (maximizing profit) and a social objective 

(minimizing environmental impact) when both price and product 

configuration are design variables.  

  

Policy incentives are studied in [85] along with technology-

adoption indifference curves, leading to a policy optimization 

problem that allows a firm to identify the most profitable product 

development efforts in response to a given policy environment. 

Further, it is discussed that government organizations could use 

the formulation to define policies that maximize technology 

adoption within a market given the design decisions of a firm. 

 

Optimization of product concept 

The establishment, either explicit or implied, or firm preferences 

in a Design for Price problem allows for the simultaneous 

optimization of both product configuration and product price. 

Such optimizations can occur in a static competitor market or in 

one where the competition is allowed to respond. 

 

Optimization of a vehicle is performed in [86] by taking into 

account technology advancements, vehicle style, and customer 

preference changes due to fluctuations in the market. Here, the 

objective is maximizing the marketability of the vehicle subject 
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to specified design constraints. The role of constraints are also 

explored in Foster and Ferguson [87] in the form of design 

prohibitions. Design prohibitions are defined to exist when two 

product attributes cannot mutually exist together on a defined 

configuration. The study conducted in the work explores whether 

it is more effective to incorporate the design prohibitions into the 

estimation of the design model or if the prohibitions should be 

enforced as constraints placed upon the optimization problem. 

The recommendation made by the authors is that constraints 

should be included in the optimization problem formulation and 

that prohibitions should not be enforced in model estimation. 

 

Computational cost is also considered in [88,89] and [90]. These 

works explore how estimates from the demand model can be 

used to reduce computational cost and improve solution quality 

when optimizing product line design problems. A targeted 

population strategy is introduced for both single and 

multiobjective problem formulations where respondent-level 

preference estimates from a hierarchical Bayes mixed logit 

model are used to seed the starting population of a genetic 

algorithm. This algorithm tailoring concept is extended in [90] 

by exploring modifications to the crossover operator in ways 

unique to a Design for Price design problem.  

 

A responsive competitor is considered in [91] by allowing for 

pricing reactions. Three product design case studies are 

introduced and it is shown that a Stackelberg leader strategy 

outperforms a Nash strategy when the objective is profit. 

However, it is also shown that both strategies outperform one 

that ignores possible competitor reactions. The numerical 

stability of an optimization in such “design-then-pricing” 

problems is explored in [92] by comparing the outcomes when 

equilibrium prices are treated as an intermediate quantity and 

when prices are treated as variables that must satisfy a constraint 

describing equilibrium.  

 

Finally, there were two papers that took completely different 

approaches to optimization problem formulation. A 

customization environment was considered in [93], changing the 

objective to one focused on minimizing customer sacrifice. 

Using probability of purchase and assigning a cost to the 

customization variables, the goal of the objective was to identify 

the components that should be made available for selection in a 

build-to-order environment. The work presented in [94] reflects 

more of a satisficing optimization formulation, as the goal of the 

paper is to understand if a computer can generate designs from 

survey results that satisfy style-based design goals.  

 

Exogenous variables 

While a majority of the research effort has been focused on 

understanding the impact of demand model form specification, 

or the ramifications of how consumer choice data is 

collected/modeled, there have been research efforts exploring the 

uncertainty sources present in a Design for Price problem. For 

example, a Bayesian approach from the econometrics literature 

is used in [95] to decompose the variance associated with the 

predictive distribution of profit into two parts – intrinsic 

uncertainty that cannot be avoided and the extrinsic uncertainty 

due to lack of precision in the model calibration parameters. 

Adopting a simulation based approach to decompose the variable 

can avoid the limitations analytical treatment encounter when 

non-normal distributions are encountered.  

 

Resende et al. [96] also explore the uncertainty in a profit 

maximization problem by considering the role of firm-defined 

risk tolerance. An α-profit metric is introduced as a way to ensure 

that the optimal solution has a (1-) chance of exceeding the 

found value of profit given the distribution of possible outcomes 

in an uncertain market. Here, uncertainty is assumed to exist only 

in the model parameter estimates as it is assumed that the model 

is correctly specified in form. 

 

Uncertainty in model parameter estimates is also explored in 

[97]. A confidence-based product line optimization problem is 

introduced by combining probabilistic part-worth values into a 

market simulation to quantify First Choice Share (FCS), 

confidence-level of the FCS, and choice inconsistency. A utility-

theory based approach capable of handling conflicts in decision 

making [32] is used to demonstrate how a decision maker could 

choose a single design from the set of solutions. It should be 

noted that the decision making approach was motivated by the 

first direction of research that spawned from Hazelrigg’s 

framework focused on the designer’s decision-making process. 

 

Finally, the work in [98] introduces a real options based approach 

to address the challenge of launching new product models over 

time in response to changing market requirements. Both price 

modifications and design modifications are considered, but a 

redesign decision must be made in advance since it requires 

greater engineering effort. A hybrid electric vehicle design 

problem is considered where gas price is uncertain over time. 

 

Lessons learned from the Design for Market Systems review 

The literature review conducted in this section shows that, over 

the last eight years, the engineering design community has spent 

significant effort exploring the impact of demand model 

choice/form by considering various sources of consumer inputs 

and different implementations of the random utility model. This 

application of economic theory to the demand model block of the 

DBD framework complemented the original motivation for the 

framework itself. In introducing the DBD framework Hazelrigg 

was more concerned with the decision-making challenges faced 

by the designer and how utility theory could be used to ensure 

rational choices were being made when selecting an alternative. 

The richer understanding of preference modeling (a 

representation of product demand) has been driven by the 

interest in achieving higher fidelity estimates of the relationship 

between product attributes and customer choice. Collectively, 

these research efforts have approached the Design for Price 

formulation by assuming that purchase choice is driven by a 

combination of technical product attributes, consumer-specific 

attributes and the social network of the customer.  
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A missing element across almost all work in Design for Price is 

validation of model form by the demonstration of true predictive 

capabilities and an understanding of the context (or heuristics 

[10]) under which a model form remains valid. Further, while 

Hazelrigg did notate demand as a function of time – opening the 

ability to model preference changes in a market over time in 

addition to diffusion rates of adoption – it is unclear whether the 

system attributes that drive choice in a Design for Price 

framework are the same for Design for Place and Design for 

Promotion frameworks.  

 

The work of Shiau and Michalek [50] on the concept of market 

systems marked another pivotal transition in market-based 

design research. In addition to presenting a proof that clearly 

demonstrated the role of random coefficient and mixture models 

of customer choice in market based design problems 

(specifically that these models must be used in product line and 

product family design problems because optimal design 

frameworks employing multinomial logit models necessarily 

converge to a single optimum), they also introduced the concept 

of market structure to the engineering design community. This 

effectively initiated work within engineering design community 

in the domain of Design for Place. 

 

DESIGN FOR PLACE 

 “In the marketing mix, the process of moving products from the 

producer to the intended user is called place. In other words, it is 

how your product is bought and where it is bought. This 

movement could be through a combination of intermediaries 

such as distributors, wholesalers and retailers. In addition, a 

newer method is the internet which itself is a marketplace now.” 

(https://www.cleverism.com/place-four-ps-marketing-mix/) 

 

In 2008, Shiau and Michalek [50] introduced a market systems 

problem formulation where demand is influenced both by the 

action of competitors and the structure of the manufacturer-

retailer interaction. This work aligned with the concurrent efforts 

by Williams et al. [99] who considered retail channel acceptance 

as an influential parameter effecting engineering design 

decisions. These efforts highlight beginning efforts from the 

community to create a Design for Place framework. Specifically, 

Shiau and Michalek introduced three classes of competitor 

response and four different manufacturer-retailer formulations 

(as shown in Figure 5): 

 Class I – competitor products remain fixed in terms of 

configuration and price 

 Class II – competitor products remain fixed in 

configuration but can respond with price changes 

 Class III – competitor products can respond with both 

configuration and price changes 

 

 
Figure 5. Channel structure scenarios: (a) company store, 

(b) franchised retailer, (c) single common retailer, and (d) 

multiple common retailers (from [50]) 

 

The importance of Design for Place is the suggestion that a 

manufacturer may need to produce different product variants to 

sell in different retail channels. There has been little (if any) 

research explicitly focused on tailoring design to specific retail 

channels, although we posit that several topics explored outside 

the mainstream of Design for Price research are salient for 

Design for Place. 

 

A nested multinomial logit approach was presented in [100] that 

considers correlations between product bundles and individual 

product categories. A nested optimization approach is used to 

define retail price by accounting for the relative clout of retailers 

in the market. This work is significant in that it demonstrated 

how engineering design decisions coupled with a neglect of the 

retailer’s pricing decision could lead to unfavorable wholesale 

prices and poorly positioned products.  

 

Accounting for uncertainty associated with other market players 

led to the development of an agent-based approach with learning 

behavior in [101]. Agents in this formulation represented both 

competing manufacturers (capable of changing product price and 

product configuration) and retailers (capable of changing 

pricing), as shown in Figure 6. A no-regret learning algorithm 

was used so that equilibrium was analytically guaranteed. 

 

 
Figure 6. Developing a Design for Place framework. 

Competition from competing manufacturers influences 

both short term design and long term design for a retail 

channel (from [101]) 

 

https://www.cleverism.com/place-four-ps-marketing-mix/
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Stochastic and robust models were used to model the supply 

chain and create a network structure between suppliers, 

manufacturers and retailers [102]. This work introduced 

disruption probabilities in the procurement process, and demand 

was modeled by a random variable with a normal distribution. 

Uncertainty analysis was also considered in [103] by exploring 

the challenge of interoperating sourced parts and services and 

relating those impacts to the overall marketing objectives. 

 

We propose a future vision for Design for Place that extends from 

the random utility model traditionally used in Design for Price 

research. In a random utility model a customer’s stated choices 

of products are regressed on product attributes (typically brand, 

price, and features of the product). Revealed preference models 

can also be estimated by using real purchase data. This model 

implicitly relates product choice to product features, which is a 

reasonable assumption under the following conditions 

[104,105]: 

 Customers recognize the product features used as 

independent variables in the choice model 

 Product attribute information is available equally for all 

alternatives (this is commonly known as a Complete 

Information assumption) 

 The respondent has unrestricted access to all 

alternatives (this is commonly known as a Complete 

Availability assumption) 

 

The motivation for research in Design for Place is the prospect 

that the validity of these assumptions varies as a function of the 

marketing channel. These assumptions seem plausible for 

transactions in traditional retail outlets, in which products are 

available to the consumer for direct comparison, the purchase is 

an interactive process between the customer and the merchant, 

and the numbers of available product alternatives are limited by 

shelf space constraints. 

 

However, market dynamics are shifting increased volumes of 

transactions from traditional retail outlets to online merchants 

and the assumptions underlying the conventional random utility 

model grow weaker. In the online environment, products are not 

available for direct comparison and shoppers rely on incomplete 

and/or imperfect information from published product 

specifications, photos, or videos [106,107]. Further, the purchase 

decision is typically much less interactive [108]; a customer’s 

communication with merchants may be asynchronous and even 

indirect if sales support functions have been outsourced. In this 

environment, user-generated product reviews become a primary 

source of information. However, this data is highly unstructured 

and often contradictory [109]. The relationships of product 

attributes derived from user-generated product reviews could be 

expected (at best) to relate indirectly to those included in a highly 

structured discrete choice model. Finally, the numbers of product 

alternatives available from online merchants are typically 

exceedingly large relative to offerings in traditional retail outlets. 

Under these conditions, customers will likely apply heuristics to 

limit their choice sets and customer choice models used to inform 

product design and estimate product demand must accurately 

account for differences in choice behavior exhibited when 

purchasing through different retail channels.  

 

As the community begins to develop approaches tailored toward 

Design for Place formulations, the following techniques and 

considerations might apply for online channels: 

 Modeling customer heuristics for limiting choice using 

techniques like lexicographic choice models [110,111] 

or non-compensatory models [71,112]. 

 Using natural language processing combined with 

machine learning [113,114] to automatically annotate 

unstructured online reviews such that their structures 

afford estimation of traditional discrete choice models. 

 Agent-based choice models accounting for the more 

complicated dynamics of online purchasing. 

Consumers often lack the data and/or are not inclined to 

apply traditional “rational” decision making methods in 

online spaces (often characterized by daunting numbers 

of alternatives and limited access to necessary 

information). Instead, customers may rely on the 

judgments of opinion leaders (professional reviewers or 

those with elevated status in social networks). Such 

opinion leaders would need to be incorporated in agent-

based models as acting between the buyers, retailers, 

and designers/manufacturers/producers. This may lead 

to a change in corporate strategy where the designer 

delivers to the value of the opinion leaders who in turn 

influence the customers to purchase specific products. 

 Understanding the core causes of a product getting a 

minimal (1 or 2) star review in an online environment. 

Specific negative feedback in such reviews may 

directly map to a failure to meet either basic needs or 

performance needs, as defined by the Kano model 

[115,116]. Fundamental to the Kano model is that 

customers will not have a negative reaction to a missing 

delighter, but will have a significant negative reaction 

to missing or poorly implemented basic and 

performance needs. One approach to ensuring delivery 

on basic and performance needs may be formulating the 

need as an inequality constraint in the optimization 

problem statement. Further, there is a need to 

understand the relationship between delighting a 

customer and a positive review. One hypothesis to be 

tested is that a fundamentally new solution can delight 

a customer group and lead to a 5 star review as long as 

all basic and performance needs are satisfied [117–

119].   
 

Referring back to the DBD framework, addressing Design for 

Place problems will challenge existing formulation assumptions 

about the blocks associated with system attributes, demand, and 

exogenous variables. It may not be true that the attributes 

influencing demand are the demographic and technical attributes 

often used in Design for Price problems. Rather, the technical 

attributes of a system may lead to online reviews that have a 



1Corresponding Author 10 Copyright © 2017 by ASME 

greater influence on purchase behavior. Further, Design for Place 

problems will lead to more complex optimization problem 

formulations requiring improved computational efficiency and 

MDO frameworks that were originally created for Design for 

Product problem formulations. Problem formulations might need 

to be extended for retail environments that consider a system of 

systems model [120–122] where a retail channel allows for 

customers to shop multiple sellers for a variety of different 

products.  

 

Design for Place and Design for Price problems have at least one 

important similarity. An assumption behind both scenarios is that 

customer motivation is given and that we as engineers are 

designing products with the goal of best meeting their mental 

model of what the product should be. In transitioning to the final 

Design for P – Promotion – it is possible to actively design the 

product-price strategy in a way that reshapes the customer’s 

motivational pattern. 

 

DESIGN FOR PROMOTION 

As discussed in [123], advertising, sales promotions, direct 

marketing, personal selling and public relations are the five 

major promotional tools used in marketing. The use of such 

promotional tools to strategically influence customer behavior 

was also highlighted by Shocker and Srinivasan [20]. In addition 

to discussing that product bundles should be targeted to 

individual market segments they stated that promotion could: 

 

 “potentially affect perceptions concerning the 

location of the promoted product or competitive 

products as well as the saliences of attributes and 

locations of ideal points . . . Indeed the framework 

could some day provide the basis for comparing 

product, promotion, and other elements of the 

marketing mix in terms of their effectiveness (over 

time) in achieving desired marketing objectives.” 

 

There have been some early efforts to consider Design for 

Promotion in the Design for Market Systems session. Much of 

this work is formulated around the concept of product-service 

coordination. For example, the work in [124] explored how 

similarity between customer requirements or functions could be 

used to support the acquisition of new services. More recently, 

the work by Sinha et al. explored the relationship between 

member acquisition and value in a two-sided market [125]. 

Starting with a mathematical foundation using canonical affinity 

curves, a simulation of a two-sided market is created by 

considering a system of users and developers. 

 

We propose a future vision for Design for Promotion where 

engineers reshape customer motivational patterns through a 

combination of engineering design decisions and marketing 

techniques. Possible research opportunities include: 

 Understanding how tradespace visualization tools [6] 

could be used to guide discussions with marketing 

staffs to develop an appropriate messaging campaign. 

This could involve determining the dimensions in 

system attribute space where the company’s product 

offerings are non-dominated because of the inclusion of 

existing product features or new product features that 

could be offered. Rather than responding to perceived 

customer tradeoffs between product attributes, a 

strategy could be formed that (i) actively shifts a 

customer’s attention to attributes reflective of the 

product line’s strength, and/or (ii) influences public 

opinion to assign higher value to an attribute that the 

manufacturer specifically wants to highlight.  
 Exploring optimization problem formulations that 

provide excess performance capabilities or over-

achieve in feature inclusion so that marketing staff have 

room to maneuver in creating promotional strategies, 

especially in response to uncertain competitor behavior 

or other exogenous factors. The nature of this problem 

formulation could be similar to the inclusion of slack 

variables used in classical optimization techniques [4]. 

 Exploring the relationship between system and 

lifecycle costs, system attributes, and the strategic 

positioning of products in the market segmentation grid 

especially with respect to price point. In Design for 

Price problems the magnitude of the price variable is 

driven by the demand model. In Design for Promotion, 

price is strategically balanced by customer demand and 

promotional considerations, allowing specific price 

points to be defined and cost efficiencies [126] to be 

explored. 

 Building on the problem formulation introduced in [38] 

where analytical target cascading was used to integrate 

business objectives and engineering considerations by 

including how resources could be most effectively 

allocated toward promotional tools. 

 Understanding how principles of systems-of-systems 

[127] engineering can be extended to promotional 

strategies that bundle products and product-service 

combinations. 

 Exploring how control strategies – such a proportional 

and derivative control – can be used to influence the 

dynamic variations in product sales by controlling price 

discounts and promotions [128].  

 Building on existing mathematical models of product 

adoption [76,129] by linking engineering design 

decisions to social media presence for a product [114] 

in a way that identifies possible lead users and the 

promotional strategies needed to acceleration adoption 

rates.  
 Understanding the relationship between promotion and 

product customization [130]. This would involve 

identifying  the product attributes that provide delight 

[131,132] and the subsequent promotional strategies 

needed to engage a heterogeneous market in a way that 

encourages adoption.  
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Formulating Design for Promotion problems requires elements 

from all other Design for P frameworks: multiobjective and 

multidisciplinary optimization approaches used to solve Design 

for Product problems,  understanding how demand is influenced 

by system attributes, price and time as done in Design for Price 

formulations, and understanding the distribution channels and 

purchasing environments modeled in Design for Place 

formulations. However, rather than simply responding to the 

needs of the customer by creating products, Design for 

Promotion problem formulations must model how engineering 

design decisions and marketing tools can be used simultaneously 

to actively modify customer purchasing behavior in line with 

defined corporate preferences. 

 

CONCLUSIONS  
The goal of this paper was to review the current state-of-the-art 

in market-driven product design research and understand how far 

we have come as a community in progressing through the Four 

Ps of Marketing (Product, Price, Place and Promotion). We argue 

that work in Design for Product is mainly a requirement-driven 

process that is supported by advancements in nonlinear 

optimization, multiobjective problem formulation and 

multidisciplinary design problem architectures. A transition to 

Design for Price involved the engineering design community 

linking preference and demand to the generation of new product 

concepts. The Decision-based Design framework introduced by 

George Hazelrigg provided a comprehensive scope for market-

driven design problems and facilitated two different research 

developments. The first direction focused on the engineer’s 

decision-making process by applying normative decision 

analysis and methods for eliciting engineer preference toward 

alternatives. Simultaneously, this framework sparked significant 

exploration of the impact of demand model choice/form and how 

customer preferences for product attributes could be captured. 

The communities richer understand of preference modeling 

allows for Design for Price problem formulations that relate 

purchase choice to a combination of technical product attributes, 

consumer-specific attributes and the social network of the 

customer. This has been done in the interest of achieving  higher 

fidelity estimates of how engineering design decisions actually 

influence market behavior, though additional work is needed to 

demonstrate the true predictive capabilities of random utility 

models for engineering design problems and to gain a richer 

understanding of the context under which a model form remains 

valid. 

 

There has been significantly less work in the areas of Design for 

Place and Design for Promotion, though these problems are 

extremely rich, represent the changing dynamics of today’s 

market, and challenge some of the assumptions made by our 

community when solving Design for Price problems. The 

importance of Design for Place is the suggestion that a 

manufacturer may need to produce different product variants to 

sell in different retail channels. As market dynamics shift 

transactions from retail outlets to online merchants the 

assumptions behind the conventional random utility model grow 

weaker. Online environments change the way that people 

compare products, information is not always available or can be 

conflicting, and the number of alternatives that consumers must 

sort through can be substantially large. Research opportunities in 

Design for Place include modeling customer heuristics for 

limiting choice across various retail channels, understanding 

how natural language processing and machine learning can be 

used to automatically structure reviews in a way that can inform 

the estimation of consumer choice models, the development of 

richer agent-based models, a better understanding of what 

product attributes actually drive purchasing decisions, and the 

integration of existing design tools (such as the Kano model) 

toward understanding how product attributes map to the score 

associated with an online review. 

 

Finally, Design for Promotion challenges a common assumption 

associated with the other Design for P problems in that product-

price strategies can be designed in a way to actively reshape a 

customer’s motivational pattern driving purchasing decisions. 

We argue that clearer communication between engineers and 

marketing staffs is needed to develop effective messaging 

campaigns that (i) actively shifts a customer’s attention to 

attributes reflective of the product line’s strength, and/or (ii) 

influences public opinion to assign higher value to an attribute 

that the manufacturer specifically wants to highlight. Research 

opportunities in this space include exploring optimization 

problem formulations that integrate slack variables as a means of 

providing maneuverability in response to uncertain competitor 

behavior or other uncontrollable market factors, relating costs 

and strategic product placement especially in the context of price 

points, adding to current optimization problem formulations by 

considering how resources for promotional tools can be most 

effectively allocated, and integrating product adoption models, 

social media and engineering design decisions as a way of 

driving market success especially for new technologies or 

customized products.  

 

Most importantly, formulating Design for Promotion problems 

requires elements from all other Design for P frameworks: 

multiobjective and multidisciplinary optimization approaches 

used to solve Design for Product problems,  understanding how 

demand is influenced by system attributes, price and time 

(Design for Price), and understanding the distribution channels 

and purchasing environments modeled in Design for Place 

formulations.  

 

Over the last 9 years, the engineering design community has 

made significant advancements progressing through Design for 

Product and Design for Price. There remains significant 

opportunity for the community to come together – and 

collaborate with our other colleagues both in engineering design 

and in other disciplines – to tackle the complicated problems of 

Design for Place and Design for Promotion that have not 

received the necessary level of attention. It is our hope that this 

paper serves as a framework that drives Design for Market 

Systems research over the next decade.  
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