
1Corresponding author 1 Copyright © 2017 by ASME

ASME 2017 International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference

IDETC2017
August 6-9, 2017, Cleveland, Ohio

DETC2017-68332

BENCHMARKING THE PEFORMANCE OF A MACHINE LEARNING CLASSIFIER ENABLED MULTIOBJECTIVE GENETIC
ALGORITHM ON SIX STANDARD TEST FUNCTIONS

Kayla Zeliff
Air Force Research Laboratory

Rome, NY, USA
kayla.zeliff@us.af.mil

Dr. Walter Bennette
Air Force Research Laboratory

Rome, NY, USA
walter.bennette.1@us.af.mil

Dr. Scott Ferguson1
North Carolina State University

Raleigh, NC, USA
scott_ferguson@ncsu.edu

ABSTRACT
Previous work tested a multi-objective genetic algorithm that

was integrated with a machine learning classifier to reduce the

number of objective function calls. Four machine learning

classifiers and a baseline “No Classifier” option were evaluated.

Using a machine learning classifier to create a hybrid

multiobjective genetic algorithm reduced objective function

calls by 75-85% depending on the classifier used. This work

expands the analysis of algorithm performance by considering

six standard benchmark problems from the literature. The

problems are designed to test the ability of the algorithm to

identify the Pareto frontier and maintain population diversity.

Results indicate a tradeoff between the objectives of Pareto

frontier identification and solution diversity. The “No

Classifier” baseline multiobjective genetic algorithm produces

the frontier with the closest proximity to the true frontier while

a classifier option provides the greatest diversity when the

number of generations is fixed. However, there is a significant

reduction in computational expense as the number of objective

function calls required is significantly reduced, highlighting the

advantage of this hybrid approach.

INTRODUCTION
Objective function complexity, associated computation time

and large design spaces provide the impetus for reducing the

number of objective function evaluations required by modern

optimization algorithms. To reduce computational cost,

designers must often choose between using a low fidelity meta-

model (reduced run time at the tradeoff of performance estimate

accuracy) or using a high fidelity model (increased run time

with greater accuracy in performance estimate). This tradeoff

has resulted in the creation of various algorithms with the goal

of reducing the number of function evaluations while still

identifying optimal designs. Different approaches have resulted

in optimization algorithms that include probability distributions

[1], machine learning classifiers [2, 3, 4], and improved meta-

models [5]. Each of these methods results in a reduced number

of objective function evaluations and outperforms the standard

heuristic optimization algorithm configurations for Particle

Swarm Optimization [6], Simulated Annealing [7] and Genetic

Algorithms [8] in multiobjective engineering design

optimization problems.

The algorithm being benchmarked in this work was originally

developed and proposed in [3]. A flowchart of the algorithm is

shown in Figure 1. This algorithm combines a multi-objective

genetic algorithm (MOGA) and a machine learning classifier.

The algorithm follows the general process of a MOGA by

starting with a random initial population, and proceeds through

selection, crossover and mutation. After mutation, a classifier is

trained using the previously evaluated designs where “good”

designs are closer to the Pareto frontier and “bad” designs are

farther from the Pareto frontier. The classifier is then used to

label the child designs as “good” or “bad”. Only “good” designs

are evaluated, while “bad” children designs are discarded. Once

the “good” child designs are evaluated they are added to the

population, and the population is culled to maintain a consistent

size. All evaluated designs are added to a repository that is used

to retrain the classifier each generation. As the number of

designs in the repository grows the classifier has more

information for training purposes.

The algorithm in Figure 1 was tested in [3] using a composite

panel optimization problem in which the load cases of

compression and uniaxial tension were evaluated for a

composite panel of 10 layers with orientation angles ranging

from -90 to 90 degrees in increments of 10 degrees. Four

different types of classifiers, and a baseline, no-classifier option

were incorporated. Results from this multiobjective

optimization problem demonstrated that this hybrid approach

achieved a minimum reduction in objective function

evaluations of 75% when compared to the no-classifier option,

as shown in Table 1.

 2 Copyright © 2017 by ASME

Figure 1: Algorithm for Benchmark Exploration [3]

Table 1: Summary of Evaluation Reduction when Compared to

the No Classifier Option [3]

Classifier Evaluation Reduction

Decision Tree 88%

k-Nearest Neighbor 85%

Naïve Bayes 75%

Random Forest 84%

The results from this problem were encouraging but only

reflected the outcome of a single multiobjective optimization

problem. The objective of this paper is to further assess

performance of this approach across six standard benchmark

problems from the literature. Using these benchmark problems,

this work determines the problem type in which the following

machine learning classifiers perform "best": k-Nearest

Neighbor, Decision Tree, Naïve Bayes and Random Forest.

BACKGROUND
This work leverages various aspects of optimization and

machine learning. The following subsections provide relevant

information on the optimization and machine learning aspects

of this work.

Function Reducing Optimization Methods
Evolutionary optimization algorithms use prior data to slowly

move the optimal solution to the true global optimum. These

algorithms generally require large numbers of expensive

function evaluations and take considerable time to identify the

set of non-dominated solutions.

Algorithms
Several optimization algorithms for minimizing objective

function evaluations exist. Examples include Estimation of

Distribution Algorithms (EDA) [1], Design Space Reduction

[4], Surrogate-Based Optimization [5], and Classifier Guided

Sampling (CGS) [2]. Each category of algorithm takes a

slightly different approach to optimal solution identification

when compared to the method described in [3].

EDAs build statistical models from designs of the previous

iteration to identify promising candidate solutions [1]. There are

no crossover or mutation operators like those that exist in

typical evolutionary algorithms [9]. This is similar to the

approach described in [3], as previous designs are used for

predicting whether a design is close to the frontier. However,

unlike EDAs, the approach implemented in [3] includes a

crossover and mutation operator.

Design space reduction identifies ill-suited regions of the

design space and removes those regions from consideration.

This results in a restricted design space and allows the

algorithm to identify optimal designs through fewer expensive

evaluations [4]. In the method presented in [3], the classifiers

perform the action of reducing the design space through

evaluated designs. The classifiers learn which regions of the

design space result in poor solutions and label designs in those

regions as “bad”.

Surrogate-Based Optimization requires the development and

testing of a meta-model to reduce the number of expensive

evaluations [5, 10, 11]. The objective of the work in [3] is to

avoid the use of a meta-model and instead reduce the number

of expensive objective function evaluations.

In CGS, a weighted-sum single objective optimization problem

is developed in which a Bayesian network classifier is used to

predict whether child designs will improve the objective

functions or not. Results indicate the classifier significantly

reduces the number of objective function evaluations and

converges upon the optima at a faster rate than genetic

algorithms [2].

The work in [3] expands upon the concepts proposed in CGS

through the addition of a second objective function and

 3 Copyright © 2017 by ASME

completes a comparison of multiple classifiers. For the

optimization problem used in [3], the Random Forest classifier

completed the optimization in the fewest objective function

calculations and performed better than the other classifiers.

These algorithms boast improved results over standard

optimization algorithms. However, the method of reduction is

highly problem dependent. The approach used for the removal

of certain areas of the design space for one problem may not

hold for a second unrelated problem. For example, CGS

incorporates a Naïve Bayes classifier, but the results presented

in [3] indicated that a Naïve Bayes classifier is not best suited

for use in composite panel optimization.

Classification
Given the wide variety of available classification techniques,

the correct learning algorithm for a specific application is not

always apparent. In machine learning classification, the

objective is to learn a concept from historical data, called

training data, that can be used to assign previously unseen data

points, or instances, to one of two or more categories, called

classes [12]. It is believed that these types of models can be used

to approximate the behavior of complex functions, and as a

result, help isolate areas in design spaces that warrant further

investigation by labeling new designs as “good” or “bad”. Even

though a specific classification model will likely not be a

perfect facsimile of the actual problem, the idea is that the

model may induce enough information about the underlying

structure of the problem to isolate areas in the design space that

deserve further investigation. In this work, classification

models are explored from each of the following overarching

families: instance-based classifiers, statistical classifiers, rule-

based classifiers, and ensemble classifiers.

k-Nearest Neighbors (kNN)
Instance-based classifiers never truly build a model, but instead

rely on their training data to classify new instances. In the case

of the k-Nearest Neighbors (kNN) classifier [13], an unlabeled

instance is classified according to the majority class found in

the k training instances closest to its location in the feature

space. Although instance based classifiers are simplistic, they

do perform well when data points belonging to different classes

are well separated in the feature space. However, it is important

to use a distance metric that can uncover the separation between

classes in order to obtain accurate classifications.

Naïve Bayes
Naïve Bayes is a statistical classification model that requires

simple probability calculations to predict the class label of a

new instance, and it has been shown to have good performance

for a wide variety of applications [14]. A Naïve Bayes model

makes the assumption that the effect of each attribute on the

predicted class is independent of the other attributes [12]. This

assumption simplifies the required calculations of the classifier,

but is likely untrue in practice. Therefore, naïve Bayes performs

best when an instance’s attributes affect its class outcome with

high levels of independence.

Decision Trees
Rule-based classifiers follow a series of "if-then" rules applied

to the different attributes of an instance. Decision trees fit into

this family because they are easily deconstructed into rules.

Decision tree algorithms discover their tree in a top-down

manner by choosing attributes one at a time and dividing the

training instances into subsets according to the values of their

attributes. The most important attribute is chosen as the top split

node, the second most important attribute is considered at the

next level, and so forth. For example, in the popular C4.5

algorithm [15], attributes are chosen to maximize the

information gain ratio in the split. This is an entropy measure

designed to increase the average class purity of the resulting

subsets of instances as a result of the sequential splits. Decision

trees have good predictive accuracy when the training data’s

attributes have a hierarchical structure in regard to determining

class label. Still, decision trees are prone to overfitting [12].

Random Forest
Ensemble classifiers leverage multiple classification models to

make a prediction. This is done by allowing each individual

model to vote for what they believe should be the class label of

the new instance, and then combing the votes according to some

scheme. Random forests are a popular ensemble technique that

creates many decision trees and uses a majority wins rule to

classify a new instance. In random forest, decision trees are

created using a random subset of the training data’s attributes

and instances [16]. It has been found that random forests can

achieve very good accuracy, especially for tasks on which a

single decision tree would already have good performance.

In review, the correct classifier to use for a particular

application is not always apparent and depends on the structure

of the underlying problem. Still, each classification model has

its own strengths. kNN has good performance when the classes

are separated in the design space. Naïve Bayes has good

performance when there are high levels of independence

between the problem’s attributes. Decision Trees have good

performance when classes can be segregated by creating top-

down separations of the data. Finally, Random Forests can

improve upon the performance of single-model classifiers. The

objective of this paper is to identify problem characteristics

contributing to the success or failure of a classifier.

METHODOLOGY
The approach taken in this work is outlined in Figure 2. The

first step requires selecting an algorithm for evaluation and a

problem with which to test. Problem set-up describes the

process of setting or selecting the necessary options with the

algorithm and problem choice. During the evaluation step, the

algorithm is run. To adequately compare the results of the

evaluation step, a set of metrics must be identified and

calculated. The following subsections give greater detail into

each of the steps of the methodology.

 4 Copyright © 2017 by ASME

Figure 2: Comparison Methodology

Problem Selection
The algorithm analyzed in this approach is based off an NSGA-

II [8] MOGA. This hybridized MOGA departs from traditional

methods by using a classification model to identify which child

designs are worthy of evaluation. The classifier is trained after

each generation to incorporate knowledge uncovered from

previously evaluated designs. For classifier training purposes,

the non-domination rank value is set at 5. Meaning, when

training each classifier, those previously evaluated designs with

a rank of 5 or less are deemed “good” while those with a non-

dominated rank greater than 5 are deemed “bad”. After training

the model and classifying the child designs, only child designs

predicted to be “good” are evaluated. Further details regarding

the approach used can be found in [3].

Problem Set-up
The six benchmark problems identified in [17] are used to

compare five different MOGAs. Four of the MOGA cases

incorporate one of the machine learning classifiers discussed in

the previous section. Additionally, there is a “No Classifier”

MOGA that is treated as a baseline. These problems highlight

the known difficulties of genetic algorithms and other

evolutionary algorithms to identify the Pareto frontier and

maintain population diversity [8]. In standard form, each of the

problems has the objectives given in Equation (1).

Minimize:

Subject to:

where

𝑇 = (𝑓1(𝑥), 𝑓2(𝑥))

𝑓2 = 𝑔(𝑥) ∗ ℎ(𝑥)

𝑥 = (𝑥1, … , 𝑥𝑚)

(1)

Evaluation
Each problem and classifier combination was run ten times and

convergence was set at 100 generations. This maximum

generation limit serves only as a means to terminate the

algorithm after a set number of iterations. The No Classifier

MOGA is also run for 100 generations and the goal is to

compare solutions with respect to the true Pareto frontier for

each benchmark problem. The population size was held

constant at 100, arithmetic crossover is used with a crossover

rate of 0.8 and the mutation rate is set at 0.1.

K-Nearest Neighbor, naïve Bayes, C4.5 decision tree and

random forest classifiers were used with the objective of

reducing the number of required function evaluations. More

specifically, kNN was implemented with a Euclidean distance

metric and one neighbor, that is k = 1. Random forests consisted

of 100 trees each. The classifier training data attributes are the

design variables associated with each of the benchmark

problems. The class label corresponds to the proximity of the

design with the current set of non-dominated results. That is,

designs closer to the Pareto frontier are labeled “good” while

those further from the frontier are labeled “bad.”

Calculate Metrics
While many algorithms significantly reduce the number of

expensive objective function algorithms. Little work exists

comparing the algorithms and the function reducing, problem

specific aspects of the algorithm. However, there exists much

work comparing optimization algorithms without the attempts

to reduce function evaluations through a machine learning

classifier.

Baskar and Suganthan [18] compared a concurrent particle

swarm optimization (CONPSO) algorithm with a standard

particle swarm optimization algorithm through a series of six

benchmark continuous optimization problems. The results

indicated the CONPSO algorithm clearly outperformed the

standard algorithm. Comparisons were conducted in terms of

solution quality, average computation time and solution

consistency.

In [19], a suite of 34 benchmarking problems are used to

compare three different optimization algorithms. Performance

is compared through the speed at which an algorithm reaches

the optimum and the differential evolution algorithm is found

to be the most robust.

In another optimization algorithm comparison, Zitzler et al

compare eight different multi-objective algorithms on six test

problems designed to highlight an algorithm’s ability (or

inability) to identify the Pareto frontier and maintain solution

diversity. Results are compared by measuring the dominated

area of the solution space, or hypervolume, and the percentage

of one set of results that covers, or dominates, another [17].

These complimentary metrics of performance were presented in

[20, 21].

The metrics provided in [17] are used for comparison of the

identified Pareto frontiers for each of the 6 benchmark

problems. Equation (2) gives the distance to the true Pareto

frontier, �̅� from an identified Pareto frontier, 𝑋′. To calculate

𝑀1 the minimum distance between each point in the identified

frontier and true frontier is calculated, summed and divided by

the cardinality, or number of points in the identified set. Smaller

values of 𝑀1 are “better” as they indicate the identified frontier

is closer in proximity to the true Pareto frontier.

 5 Copyright © 2017 by ASME

𝑀1(𝑋′) =
1

|𝑋′|
∑ min{||𝑎′ − �̅�||: �̅� ∈ �̅�}

𝑎′∈𝑋′
 (2)

Equation (3) considers the distribution and density of the

identified Pareto frontier. The neighborhood parameter, 𝜎

indicates the number of design vectors in the identified

neighborhood. The higher the value of 𝑀2 the greater the

distribution and density of identified Pareto points and

therefore, the “better” the solution. Since the number of Pareto

points influences the value for 𝑀2 these values are normalized

between 0 and 1 for better comparison.

𝑀2(𝑋′) =
1

|𝑋′| − 1
∑ |{𝑏′ ∈ 𝑋′; ||𝑎′ − 𝑏′|| > 𝜎}|

𝑎′∈𝑋′

 (3)

Equation (4) measures the range of the identified Pareto

frontier. In the case of two objectives, 𝑀3 is the distance

between the outermost two designs in the solution space.

𝑀3(𝑋′) = √∑ max{||𝑎𝑖
′ − 𝑏𝑖

′|| : 𝑎′, 𝑏′ ∈ 𝑋′}
𝑚

𝑖=1
 (4)

Further analysis examines the precision and recall of the

classifier for the final generation (trained classifier) of the

algorithm. In this context, precision is the percentage of designs

predicted by the classifier to be “bad” that are actually “bad”.

Recall is the percentage of actually “bad” designs that are

predicted to be “bad” [22]. Through the analysis of the classifier

and hypervolume, we extract those classifiers best suited for

each of the benchmark problems.

Compare Results
Comparisons are conducted on a per benchmark test problem

basis as problem characteristics influence the result and cross-

problem comparison may be biased.

RESULTS FOR THE SIX BENCHMARK PROBLEMS
Each Test Problem was run ten times using the previously

discussed classifiers and the No Classifier option. The results in

the following subsections are the aggregation of each of the ten

runs.

Using the values given in [17] for 𝑔(𝑥) and the ranges

associated with 𝑥1, a true frontier consisting of 100 Pareto

points evenly spaced along 𝑓1 was calculated for Test Problems

1-4 and 6. Due to the nature of Test Problem 5, the number of

Pareto points of the true frontier has an upper limit of 31, so the

entire frontier was enumerated for comparison.

Test Problem 1 – Convex Pareto frontier
The first Test Problem of the benchmark set has a convex Pareto

frontier which is found when 𝑔(𝑥) = 1. Equation (5) gives the

necessary functions for minimization where 𝑚 = 30 and 𝑥𝑖 ∈

[0,1].

𝑓1 = 𝑥1

𝑔(𝑥2, … , 𝑥𝑚) = 1 + 9 ∗ ∑
𝑥𝑖

𝑚 − 1

𝑚

𝑖=2

ℎ(𝑓1, 𝑔) = 1 − √𝑓1/𝑔
(5)

After running the algorithm 10 times for each of the identified

classifiers and the No Classifier option with a convergence

criteria of 100 generations, the aggregate Pareto frontier was

identified on a per classifier basis and is displayed in Figure 3.

Given the defined termination criteria, none of the aggregate

Pareto frontiers reached the true Pareto frontier.

The No Classifier frontier produces the lowest values consistent

with the minimization objective. However, the no-classifier

frontier spans less than half of the feasible solutions space for

the frontier. This is also true of the Decision Tree, kNN and

Random Forest frontiers. Only the naïve Bayes classifier

produces a frontier that covers a significant range of the solution

space.

Figure 3: Test Problem 1 Aggregate Pareto Frontiers

Table 2 provides summary information for each of the

aggregate Pareto frontiers displayed in Figure 3. The No

Classifier frontier has the smallest extent and the naïve Bayes

frontier the largest. From a proximity standpoint, the No

Classifier frontier is closest to the true frontier. The number of

designs in the frontier plays a role in the diversity measurement.

Frontiers consisting of more Pareto points are likely to have

larger values for diversity. Therefore, we disregard diversity for

comparison.

Despite the differences in metrics, the identified aggregate

Pareto frontiers in Figure 3 are comparable. That is, there exist

trade-offs between each of the classifier frontiers and no

frontier is superior to all others. The baseline, No Classifier

MOGA required over 15,000 function evaluations to produce

the frontier shown. Naïve Bayes, the frontier with the largest

extent, is achieved in slightly less than 1,000 function

 6 Copyright © 2017 by ASME

evaluations. This is a function evaluation savings of 93.4%,

achieved because the children designs classified as being of

poor quality are not evaluated. kNN, which produced the

frontier with the greatest diversity measurement and most

unique designs, saved 25.6% in function evaluations compared

to the No Classifier MOGA and nearly tripled the next highest

number of function evaluations required by Random Forest.

Table 2: Test Problem 1 Metrics for Performance Comparison

Decision

Tree

k-Nearest

Neighbor

Naïve

Bayes

Random

Forest

No

Classifier

Unique

Designs
137 184 24 104 39

Hyper-

Volume
6.00 6.34 8.21 9.14 3.33

Proximity

𝑴𝟏
2.99 3.27 2.35 3.57 3.07

Diversity

𝑴𝟐
15572 30586 522 7802 1256

Extent

𝑴𝟑
2.45 2.46 2.88 2.05 1.53

Function

Count
2988 11445 1019 3639 15382

Function

Call

Percent

Reduction

80.6% 25.6% 93.4% 76.3% --

A secondary goal of this work is to evaluate the effectiveness

of the classifier in terms of predictive ability. As previously

discussed, this is done using precision and recall. Figure 4

shows the average precision for each classifier at each

generation. All four classifiers start with relatively high

precision values, but experience a severe reduction in precision

after a few generations. The low average precision values

indicate an inability of the classifier to accurately differentiate

“good” designs from “bad”.

Figure 4: TP 1 Average Classifier Precision per Generation

Similarly, Figure 5 displays, for each generation and classifier,

the average percentage of actually “bad” designs that are

predicted to be “bad”. All classifiers experience an increase in

recall in the early generations of the algorithm. However, kNN,

Decision Tree and Random Forest decrease in average recall as

the algorithm reaches the stopping criteria. Naïve Bayes reaches

and maintains nearly perfect recall around generation 30 until

the convergence criteria of 100 generations.

Figure 5: TP 1 Average Classifier Recall per Generation

Test Problem 2 – Nonconvex Pareto frontier
Opposite to Test Problem 1, the second Test Problem has a

nonconvex frontier also found when 𝑔(𝑥) = 1. The specifics for

Test Problem 2 are given in Eq. (6) where 𝑚 = 30 and 𝑥𝑖 ∈ [0.1].

 𝑓1 = 𝑥1

𝑔(𝑥2, … , 𝑥𝑚) = 1 + 9 ∗ ∑
𝑥𝑖

𝑚 − 1

𝑚

𝑖=2

ℎ(𝑓1, 𝑔) = 1 − (
𝑓1

𝑔
)

2

(6)

The aggregate non-dominated solutions from the combination

of runs are shown in Figure 6. The aggregate Pareto frontiers

favor lower values for 𝐹1 and higher values for 𝐹2. As a result

the generated frontiers are sparse as the values for 𝐹1 increase.

Further, the aggregate Pareto frontiers do not fully capture the

nonconvex behavior of the true Pareto frontier. Instead, the

aggregate frontiers appear closer to a straight line than convex.

However, this is a scale problem and slight nonconvex behavior

is apparent when the scale for 𝐹2 is altered.

Once again, the No Classifier option Pareto frontier dominates

those frontiers of the other classifiers. As with Test Problem 1,

none of the algorithms reach the actual Pareto frontier given the

convergence criteria specified. Future work will change the

convergence criteria so that the number of generations is

increased, and a comparison will also be completed when the

number of function calls used is held constant.

 7 Copyright © 2017 by ASME

Figure 6: Test Problem 2 Pareto Frontiers

To better compare the results of Figure 6, the results displayed

in Table 3 describe the proximity of the identified frontier to the

true Pareto frontier, and the diversity and extent of the identified

frontier. In pursuit of function count reduction, the naïve Bayes

classifier once again provides the greatest reduction in function

calls with an average of over 95% savings. The naïve Bayes

classifier also produces the Pareto frontier with the greatest

extent, nearly doubling that of the No Classifier MOGA.

Unfortunately, in the context of unique designs, hypervolume,

proximity and diversity, the naïve Bayes classifier

underperforms the other classifier options.

Table 3: Test Problem 2 Metrics for Performance Comparison

Decision

Tree

k-Nearest

Neighbor

Naïve

Bayes
Random

Forest

No

Classifier

Unique

Designs
37 87 12 60 82

Hyper-

Volume
14.09 8.45 13.93 0.16 11.70

Proximity

𝑴𝟏
3.39 3.38 3.49 3.67 3.44

Diversity

𝑴𝟐
1082 5664 126 2482 4532

Extent

𝑴𝟑
1.23 0.99 1.49 1.94 1.23

Function

Count
2184 12120 707 3322 15389

Function

Call

Percent

Reduction

85.8% 21.2% 95.4% 78.4% --

In consideration of the “best” performing classifier in terms of

precision and recall, Figure 7 displays the average precision of

each classifier for each of the 100 generations. Classifier

precision reduces severely in the first 10 generations. Initially,

all classifiers boast average precision values of nearly 100%,

but as the generations continue, the precision appears to plateau

between 0.2 and 0.4, depending on the classifier. Random

Forest experiences an even larger decline in average precision

in the final generations of the algorithm. kNN precision values

suffer greatly after generation 40. These low precision values

indicate that the classifiers are predicting several “good”

designs as “bad” and this is likely responsible for the lack of

nonconvex behavior found in the Pareto frontiers in Figure 6.

Figure 7: TP 2 Classifier Average Precision per Generation

Further analysis of the classifiers for Test Problem 2 produced

the recall results presented in Figure 8. Despite the inability of

the classifiers to accurately differentiate between “good” and

“bad” designs, the classifiers do appropriately classify most

“bad” designs as “bad” with the exception of kNN.

Unfortunately, the high recall value is likely a result of the

classifiers predicting all designs as “bad”. In combination with

the poor average precision values, the kNN classifier also

produces poor average recall values. The combination of these

low values is likely the cause of the large number of expensive

function evaluations.

Figure 8: TP 2 Classifier Average Recall per Generation

 8 Copyright © 2017 by ASME

Test Problem 3 – Discrete solution space
Test Problem 3 seeks to examine the ability of an optimization

algorithm to handle a discrete solution space as the Pareto

frontier consists of several distinct convex pieces. Equation (7)

shows the necessary components of the minimization problem

where 𝑚 = 30 and 𝑥𝑖 ∈ [0,1].

 𝑓1 = 𝑥1

𝑔(𝑥2, … , 𝑥𝑚) = 1 + 9 ∗ ∑
𝑥𝑖

𝑚 − 1

𝑚

𝑖=2

ℎ(𝑓1 , 𝑔) = 1 − √
𝑓1

𝑔
− (

𝑓1

𝑔
) sin(10𝜋𝑓1)

(7)

The aggregate Pareto frontiers for Test Problem 3 are shown in

Figure 9. Once again, the No Classifier frontier is concentrated

toward the smaller values for 𝐹1 and does not expand into the

larger function values. On the other hand, the naïve Bayes

frontier spans the same length of the solution space as the true

frontier although the values for 𝐹2 are larger. The lack of

convergence to the true frontier is a result of the prematurely

enforced convergence of 100 generations.

Figure 9: Test Problem 3 Aggregate Pareto Frontiers

Further investigation into the frontiers in Figure 9 results in the

metrics presented in Table 4. As with the previous test

problems, naïve Bayes produces the frontier with the greatest

extent and the fewest number of function evaluations with a

savings of 93%. Additionally, the naïve Bayes frontier has the

smallest proximity value and is therefore, closest to the true

frontier. However, in comparison with the other classifier

options, naïve Bayes is outperformed by Decision Tree and

Random Forest in terms of hypervolume and all other options

in terms of diversity. From the results in Table 4, no classifier

is clearly superior to all other classifiers.

Table 4: Test Problem 3 Metrics for Performance Comparison

Decision

Tree

k-Nearest

Neighbor

Naïve

Bayes

Random

Forest

No

Classifier

Unique

Designs
116 170 91 128 106

Hyper-

Volume
6.90 8.67 7.39 5.89 6.93

Proximity

(𝑴𝟏)
2.67 3.04 2.20 2.54 3.06

Diversity

(𝑴𝟐)
12068 25270 6846 14434 9706

Extent

(𝑴𝟑)
2.72 2.75 3.72 3.17 1.84

Function

Count
3755 13802 1086 4723 15402

Function

Call

Percent

Reduction

75.6% 10.4% 93% 69.3% --

To explore the precision and recall values for Test Problem 3,

Figure 10 displays the average precision for each of the

classifiers for each of the 100 generations. As is consistent

across Test Problems 1 and 2, the average precision for Test

Problem 3 severely decreases in the early generations. Naïve

Bayes holds somewhat steady at 0.4 across all generations

while Decision Tree, kNN and Random Forest continue to

decline. The mostly constant average precision for naïve Bayes

may explain the large computational savings seen in Table 4.

The Decision Tree and Random Forest classifiers display

similar behavior in that there is a steady decrease in precision

as the number of generations increase and then the average

values begin to increase with the larger generations. This

similar behavior is likely a result of the Decision Tree as a

Random Forest consists of several Decision Trees and a voting

mechanism. This indicates that Decision Trees are not well

suited for problems with trigonometric functions.

Figure 10: TP 3 Classifier Average Precision per Generation

 9 Copyright © 2017 by ASME

In a similar manner, Figure 11 shows the average recall for each

generation for each classifier. While naïve Bayes does not

initially perform “best”, naïve Bayes continually improves its

average recall before plateauing at nearly perfect recall. On the

other hand, Random Forest quickly provides the highest

average recall values, but continually decreases in average

recall as generations increase. Similarly, the average recall

values for Decision Tree decline as the number of generations

increases. kNN appears almost piecewise in terms of recall

values. The nearly perfect prediction of “bad” designs as “bad”

for the naïve Bayes classifier likely plays a role in the large

reduction in expensive function evaluations. This means the

classifier is ensuring no “bad” designs are evaluated.

Figure 11: TP 3 Classifier Average Precision per Generation

Test Problem 4 - Multimodality
The fourth Test Problem tests the ability of the algorithms to

handle multimodality as there exist 219 local Pareto frontiers.

The global Pareto frontier occurs when 𝑔(𝑥) = 1. Equation (8)

shows the functions for 𝑓1, 𝑔 and ℎ. In Eq. (8), 𝑚 = 10 while

𝑥1 ∈ [0,1] and 𝑥2, … , 𝑥𝑚 ∈ [−5,5].

𝑓1 = 𝑥1

𝑔(𝑥2, … , 𝑥𝑚) = 1 + 10(𝑚 − 1) + ∑ (𝑥𝑖
2 − 10 cos(4𝜋𝑥𝑖))

𝑚

𝑖=2

ℎ(𝑓1, 𝑔) = 1 − √𝑓1/𝑔

(8)

Figure 12 shows the aggregate Pareto frontiers identified by

each of the classifiers options and the No Classifier MOGA.

Clearly, the algorithm, including the baseline MOGA, struggles

with the multimodality aspect of the test problem. The

aggregate Pareto frontiers do not mimic the behavior of the true

frontier and are concentrated around exceptionally small values

for 𝐹1 and extremely large values for 𝐹2.

Figure 12: Test Problem 4 Aggregate Pareto Frontiers

From Figure 12, it is difficult to ascertain which Pareto frontiers

are “better” as they clearly do not mimic the behavior of the true

frontier. Table 5 summarizes metrics for each of the aggregate

Pareto frontiers. The naïve Bayes classifier produces the

greatest reduction in function calls with over 83% and is

comparable to the No Classifier MOGA for the metrics of

proximity and extent. However, the No Classifier frontier

consists of several more unique designs and boasts a much

larger hypervolume. The large hypervolume calculation is a

result of the single Pareto point in Figure 12 with a value for 𝐹1

greater than 0.2.

Table 5: Test Problem 4 Metrics for Performance Comparison

Decision

Tree

k-Nearest

Neighbor

Naïve

Bayes

Random

Forest

No

Classifier

Unique

Designs
68 5 35 27 169

Hyper-

Volume
76.96 53.16 144.29 87.40 822.73

Proximity

𝑴𝟏
80.23 68.47 66.23 98.92 70.07

Diversity

𝑴𝟐
4110 20 1186 702 25772

Extent

𝑴𝟑
135.4 23.34 123.01 124.50 151.22

Function

Count
5571 12805 2593 6910 15408

Function

Call

Percent

Reduction

63.8% 16.9% 83.2% 55.2% --

Despite the poorly identified Pareto frontiers displayed in

Figure 12, the classifiers performed well in terms of average

precision as shown in Figure 13. Unlike previous test problems,

the average precision values increase after the first few

generations, except for naïve Bayes. In terms of consistency,

however, naïve Bayes appears to provide the most consistent

 10 Copyright © 2017 by ASME

average values for precision while the remaining classifiers

fluctuate between high and low average precision values.

Figure 13: TP 4 Classifier Average Precision per Generation

Similarly, the average classifier recall for each generation is

displayed in Figure 14. The average recall values have nearly

inverse behavior of the average precision values. For example,

naïve Bayes consistently has the lowest average precision

values and the highest average recall values. kNN has the

highest average precision values and the lowest average recall

values. This inverse behavior implies the classifier does not

identify many “bad” designs, but when it does, it accurately

classifies them.

Figure 14: TP 4 Classifier Average Recall per Generation

Test Problem 5 – Binary design string
Unlike the other test problems, in Test Problem 5 each design

variable is a binary string. As a result, the crossover method for

Test Problem 5 is k-point crossover with k = 3. Equation (9)

gives the necessary sub-functions for the minimization problem

where 𝑚 = 11 and 𝑥𝑖 ∈ [0,1]. The first design variable, 𝑥1 is a

binary string of length 30 while the remaining variables are of

length 5. The Pareto frontier is formed when 𝑔(𝑥) = 10.

 𝑓1(𝑥1) = 1 + 𝑢(𝑥1)

𝑔(𝑥2, … , 𝑥𝑚) = ∑ 𝑣(𝑢(𝑥𝑖))
𝑚

𝑖=2

ℎ(𝑓1, 𝑔) = 1/𝑓1

where 𝑢(𝑥𝑖) gives the number of ones in 𝑥𝑖

and

𝑣(𝑢(𝑥𝑖)) = {
2 + 𝑢(𝑥𝑖) 𝑖𝑓 𝑢(𝑥𝑖) < 5

1 𝑖𝑓 𝑢(𝑥1) = 5
}

(9)

Figure 15 display the aggregate Pareto frontiers identified for

each classifier and the no classifier baseline option. Visually,

the No Classifier option appears to outperform the other

classifiers in terms of proximity to the true frontier. However,

in terms of density, the naïve Bayes and Random Forest

classifiers produce the more diverse and dense Pareto frontiers.

Figure 15: Test Problem 5 Aggregate Pareto Frontiers

Table 6 provides the metrics for comparison for the aggregate

Pareto frontiers in Figure 15. The Decision Tree aggregate

Pareto frontier is accomplished with a reduction in expensive

function evaluations over 95%. However, this reduction in

function evaluations comes at the expense of frontier extent,

hypervolume and proximity. kNN provides a large diversity

metric and the smallest proximity measurement, but provides

very little in computational savings at less than 10%.

 11 Copyright © 2017 by ASME

Table 6: Test Problem 5 Metrics for Performance Comparison

Decision

Tree

k-Nearest

Neighbor

Naïve

Bayes

Random

Forest

No

Classifier

Unique

Designs
16 143 261 31 121

Hyper-

Volume
126.27 167.30 203.86 249.78 127.2

Proximity

𝑴𝟏
1.81 0.63 1.38 1.68 0.72

Diversity

𝑴𝟐
228 12056 55458 880 7214

Extent

𝑴𝟑
16.51 15.45 21.93 19.17 10.4

Function

Count
429 9014 2289 756 9899

Function

Call

Percent

Reduction

95.7% 8.9% 76.9% 92.4% --

To explore the average precision of each classifier for Test

Problem 5, Figure 16 displays the average precision per

generation. The precision values experience a large decline in

the first few generation of the algorithm, but reach a steady state

after approximately generation 20. Decision Tree and Random

forest provide the highest levels of average precision with

Decision Tree slightly outperforming Random Forest. Naïve

Bayes continues to decline in average precision as the

generations continue. kNN performs extremely poorly in the

later generations with precision values of nearly zero. This

means kNN classifies nearly every design as “good”.

Figure 16: TP 5 Classifier Average Precision per Generation

Along with the consistent average precision values for Decision

Tree and Random Forest, the classifiers also provide excellent

average recall values as can be seen in Figure 17. While kNN

struggles with consistency and eventually produces recall

values of zero, Decision Tree and Random Forest reach average

recall values of nearly 1 meaning nearly all actually “bad”

designs are predicted to be “bad.”

Figure 17: TP 5 Classifier Average Recall per Generation

Test Problem 6 – Non-uniformly distributed frontier
In Test Problem 6, the ability of the algorithm to identify non-

uniformly distributed designs along the Pareto frontier and low

solution density near the global Pareto frontier is evaluated.

Equation (10) displays relevant equations for Test Problem 6

where 𝑚 = 10 and 𝑥𝑖 ∈ [0,1]. The Pareto frontier is found when
𝑔(𝑥) = 1.

 𝑓(𝑥1) = 10 − exp (−4𝑥1) sin6(6𝜋𝑥1)

𝑔(𝑥2, … , 𝑥𝑚) = 1 + 9 ∗ ((∑ 𝑥𝑖)/(𝑚 − 1))0.25
𝑚

𝑖=2

ℎ(𝑓1, 𝑔) = 1 − (
𝑓1

𝑔
)

2

(10)

Figure 18 displays the aggregate Pareto frontiers for Test

Problem 6. The algorithm struggles to identify Pareto frontiers

and for the majority of the classifiers, the identified Pareto

frontier consists of only a single Pareto point. As can be seen

from the true frontier, the density of the Pareto frontier

increases as the value for 𝐹1 increases. The implemented

algorithms attempt to capture this behavior, but fail to identify

any data points for values of 𝐹1 less than 1.

Figure 18: Test Problem 6 Aggregate Pareto Frontiers

 12 Copyright © 2017 by ASME

To more accurately compare the frontiers identified in Figure

18, Table 7 displays the performance metrics for each of the

classifiers and the No Classifier option. The only classifier to

produce an actual frontier is Decision Tree. Therefore, a

diversity and extent measurement can only be calculated for

Decision Tree. In terms of function count, the naïve Bayes

classifier produces a better data point in terms of hypervolume

and proximity than the no classifier option in over 97% fewer

function evaluations.

Table 7: Test Problem 6 Metrics for Performance Comparison

Decision

Tree

k-Nearest

Neighbor

Naïve

Bayes

Random

Forest

No

Classifier

Unique

Designs
3 1 1 1 1

Hyper-

Volume
7.39 7.20 6.71 6.87 6.83

Proximity

𝑴𝟏
5.99 6.23 5.74 5.90 5.86

Diversity

𝑴𝟐
4 0 0 0 0

Extent

𝑴𝟑
0.67 0 0 0 0

Function

Count
2253 11534 454 4338 15404

Function

Call

Percent

Reduction

85.4% 25.1%
97.1

%
71.8% --

To further explore the results for Test Problem 6, Figure 19

displays the average precision for each classifier. An extreme

reduction in average precision occurs for all classifiers in the

early generations. However, as the generations increase,

precision for Decision Tree, naïve Bayes and Random Forest

levels out. kNN, on the other hand, appears sporadic in its

average precision and produces values ranging from slightly

more than 0.1 to nearly 1 across all the generations.

Figure 19: TP 6 Average Classifier Precision per Generation

Average recall, the percentage of actually “bad” designs that are

predicted to be “bad”, is displayed in Figure 20. The kNN

classifier is outperformed by all other classifiers. Decision Tree

experiences a continual climb in average recall while Random

Forest experiences a continual decline. Naïve Bayes, however,

reaches nearly perfect average recall in relatively short order

and maintains it throughout the course of the algorithm.

Figure 20: TP 6 Average Classifier Recall per Generation

DISCUSSION
The primary goal of this work is the incorporation of a machine

learning classifier into a MOGA to reduce the overall number

of function calls required while still producing results

comparable to the no classifier, baseline implementation. A

secondary goal of the work is the exploration of the classifier

results and recommendations associated with classifier

selection. The following subsections independently discusses

these objectives in more detail.

Optimization Results
A theme across all of the test problems evaluated is the tradeoff

between a low proximity value and a high diversity value. That

is, in no test problem could a “best” solution be identified. A

sacrifice must occur whether it is solution diversity or an

increased distance from the true frontier. When the number of

objective function calls is added to the discussion, the classifier

option always becomes “better” than the No Classifier option.

However, when given the choice between two classifier

options, the designer must choose proximity, diversity or

objective function count when convergence is based solely on

the number of generations processed. In the evaluated test

problems, the computation time for each objective function is

trivial. However, for more complex engineering problems, the

function count reduction may prove to be the most important

metric for classifier choice.

The classifier options appear to perform well for Test Problems

1 and 2. Although, visually, there appears to be a decrease in

solution extent and diversity in Test Problem 2.

 13 Copyright © 2017 by ASME

The discrete solution space in Test Problem 3 poses little

difficulty for the classifier options as their proximity and

diversity metrics are superior to the No Classifier option.

However, it appears that the identified classifier frontiers are

denser for smaller values of 𝐹1 and larger values of 𝐹2. This

indicates that each classifier is robust to a discrete solution

space, with the Decision Tree, Random Forest and Naïve Bayes

classifiers better able to traverse the solution space.

All classifiers and the No Classifier option struggle with the

multimodality present in Test Problem 4. In general, the

solutions are able to move past the local Pareto frontiers toward

the true frontier. However, this movement is at the cost of

solution diversity. These results support the overall conclusion

that there is a tradeoff between proximity and diversity.

The binary strings present in Test Problem 5 pose little

difficulty to the classifiers and No Classifier option. This is not

entirely surprising as the number of design combinations for

Test Problem 5 is much smaller than that of the other test

problems.

Similar to the results of Test Problem 4, the results of Test

Problem 6 indicate an inability of the algorithm to provide

proximity and diversity. It is possible that the classifiers

struggle with the non-uniformity of the solution space, but this

is unlikely to be the only contributing factor as the No Classifier

option also struggled. The low solution density near the Pareto

frontier may also play a role. To determine the contributing

factor, test problems to evaluate non-uniformity and low

solution density must be developed and run independently.

Across all six test problems, the No Classifier option performs

poorly in terms of population diversity. This may be a result of

the ability of the classifier to more accurately remove “bad”

regions of the design space. It is also possible that the classifiers

help to prevent the “rabbit-hole” behavior present by the No

Classifier option for Test Problems 4 and 6.

Since the No Classifier option requires more than double the

objective function evaluations with the exception of kNN, it is

removed from discussion as a viable solution. This holds as the

goal of the algorithm is to reduce objective function calls Table

8 displays the “best” choice for each test problem and metric.

In Table 8, the classifiers that provide the lowest proximity

value, greatest diversity value, greatest extent value and

smallest function count on a per test problem basis are

identified. The choice of a “winner” is done by simple majority

rules. In this way, the choice of classifiers is down-selected to

Decision Tree and Naïve Bayes. While these two classifiers

may not provide the “best” values for each of the calculated

metrics, their selection for a given problem may lead to an

overall “better” solution than the choice of another classifier.

Classifier Results
Each data point in the precision and recall per generation plots

is the average precision or recall value for a particular classifier

and generation across all 10 runs of the algorithm. In some

instances, the classifier did not predict any “bad” designs or no

“bad” designs existed. In these instances, the precision and/or

recall value is undefined. Therefore, these instances are

removed from the data set. Table 9 shows the number of

occurrences of an undefined precision or recall value for a given

problem and classifier combination.

From Table 9, kNN most frequently results in an undefined

precision or recall value. In opposition, only for Test Problem

5 did naïve Bayes produces any undefined precision or recall

values. The large number of undefined precision values for

kNN play a role in the large number of expensive function

evaluations as the classifier is frequently classifying all designs

as “good” and must therefore, evaluation them with the

expensive function.

Table 8: Classifier Results Comparison

Test

Problem 1

Test

Problem 2

Test

Problem 3

Test

Problem 4

Test

Problem 5

Test

Problem 6
Winner

Proximity

𝑴𝟏

Naïve

Bayes

Random

Forest

Naïve

Bayes

Random

Forest

k-Nearest

Neighbor

Naïve

Bayes

Naïve

Bayes

Diversity

𝑴𝟐

k-Nearest

Neighbor

Decision

Tree

k-Nearest

Neighbor

Decision

Tree

Naïve

Bayes

Decision

Tree

Decision

Tree

Extent

𝑴𝟑

Naïve

Bayes

Naïve

Bayes

Naïve

Bayes

Decision

Tree

Naïve

Bayes

Decision

Tree

Naïve

Bayes

Function

Count

Naïve

Bayes

Naïve

Bayes

Naïve

Bayes

Naïve

Bayes

Decision

Tree

Naïve

Bayes

Naïve

Bayes

Winner
Naïve

Bayes

Naïve

Bayes

Naive

Bayes

Decision

Tree

Naïve

Bayes

Decision

Tree/Naïve

Bayes

 14 Copyright © 2017 by ASME

Table 9: Undefined Precision and Recall Occurrence per 1000

Generations

Problem Classifier
Undefined

Precision

Undefined

Recall

Test

Problem 1

Decision Tree 6 31

k-Nearest Neighbor 306 2

Naïve Bayes 0 0

Random Forest 27 20

Test

Problem 2

Decision Tree 3 1

k-Nearest Neighbor 427 0

Naïve Bayes 0 0

Random Forest 8 17

Test

Problem 3

Decision Tree 35 5

k-Nearest Neighbor 499 7

Naïve Bayes 0 0

Random Forest 33 13

Test

Problem 4

Decision Tree 48 0

k-Nearest Neighbor 196 3

Naïve Bayes 0 0

Random Forest 49 0

Test

Problem 5

Decision Tree 0 0

k-Nearest Neighbor 648 553

Naïve Bayes 62 140

Random Forest 0 0

Test

Problem 6

Decision Tree 18 3

k-Nearest Neighbor 123 2

Naïve Bayes 0 0

Random Forest 7 10

To better explore the classifiers and their average precision

values, Figure 21 shows the average precision values for each

classifier differentiated by test problem on a single plot. From

the figure, all four classifiers produce the highest average

precision values for Test Problem 4. Recall, Test Problem 4 is

designed to evaluate the ability of the algorithm to handle

multimodality. Overall, the classifiers and baseline algorithm

produced disappointing Pareto frontiers when compared to the

true frontier. One potential reason for the higher level of

precision across all four classifiers may be the relatively small

number of design variables in Test Problem 4. However, Test

Problem 6 also has only 10 design variables and no obvious

pattern across classifiers can be extracted.

The average precision value for each classifier and problem

combination experiences a reduction in average precision in the

early generations of the algorithm. In some instances the

average precision recovers from the initial reduction. In the

early generations, the amount of training data is relatively small

and there is a more equal balance between “good” and “bad”

designs. However, as the number of generations increases, the

training data becomes skewed and the number of “good”

designs decreases while the number of “bad” designs increases.

Therefore, the classifiers tend to err on the side of classifying

designs as “bad”. One potential solution to this problem is

alteration of the cost matrix. That is, adjusting the cost matrix

can make the misclassification of a “good” design more

expensive, helping alleviate the challenges associated with

these imbalanced data sets.

Figure 21: Average Precision by Classifier

 15 Copyright © 2017 by ASME

Figure 22 displays the average recall per generation and test

problem for each of the classifiers implemented. The kNN

classifier consistently produces lower average recall values for

all of the test problems than the other classifiers. This means

kNN labeled large amounts of “bad” designs as good. As

mentioned in previous sections, the low average recall values

likely resulted in the large number of expensive function

evaluations.

With the exception of Test Problem 5, Random Forest and

Decision Tree experience variability in their respective average

recall values. Random Forest appears to peak in the earlier

generations and continually declines as the algorithm

progresses. Decision Tree has slightly more variability but does

not have the overall downward trend apparent for Random

Forest. Both Decision Tree and Random Forest achieve nearly

perfect average recall for Test Problem 5 in early generations

and maintain it until algorithm convergence. One potential

explanation for this is the reduced design space associated with

Test Problem 5. There are 80 binary values in a design string

for Test Problem 5 which translates to 280 design combinations.

However, for the other test problems there are countably

infinite values in the range [0.1] for each of the 10 or 30 design

variables depending on the test problem.

Naïve Bayes boasted the most consistent average precision

values for all test problems and behaves similarly when

considering average recall. Unlike Decision Tree and Random

Forest, naïve Bayes struggles with Test Problem 5. The average

recall value reaches a maximum in the early generations and

systematically declines as the algorithm progresses. Naïve

Bayes assumes independence between variables and perhaps

this assumption is not valid for Test Problem 5.

It is also worth noting that Test Problem 4, which consistently

had the highest average precision values, has consistently lower

average recall values. The continual expensive evaluation of

“bad” designs for Test Problem 4 may have contributed to the

poor Pareto frontiers identified for Test Problem 4. As further

evidence, the Pareto frontiers (or points) identified for Test

Problem 6 are less than stellar and the average precision and

recall for Test Problem 6 are relatively low with exceptions for

kNN for precision and naïve Bayes for recall.

Figure 22: Average Recall by Classifier

 16 Copyright © 2017 by ASME

CONCLUSION AND FUTURE WORK
The problems used in this work seek to test the ability of an

algorithm to identify the Pareto frontier and maintain solution

diversity. Overall, the algorithms failed to identify the true

Pareto frontier but this was dictated by the termination criteria

set at 100 generations regardless of number of function calls

used. An increase in the number of generations before

convergence may drastically alter the ability of the algorithms

to identify the true Pareto frontier.

When considered in the context of solution diversity, the No

Classifier option performed poorly for all 6 Test Problems.

Since the values are normalized for each Test Problem, a

comparison cannot be made across Test Problems, but it can be

seen from the presented results for 𝑀2 that the No Classifier

option is always out performed by one or more classifier

options.

There is no single classifier that produces the greatest diversity

measurement, 𝑀2, across all the Test Problems. Instead, each

classifier produces the most diverse population for at least one

Test Problem. Random Forest and Naïve Bayes each produce

the highest diversity for two Test Problems.

The tradeoff between the No Classifier option in terms of

proximity to the true Pareto frontier and the classifier options in

terms of solution diversity makes the choice of a “best” option

difficult. The designer must choose between solution diversity

and proximity. The inclusion of function count may aid in the

choice of proximity or diversity. Perhaps the best choice is

neither and instead a classifier that performs “okay” for both

metrics and has a low function count.

The analysis of different machine learning classifiers for

different problem types yielded high values for precision and

recall. As previously mentioned, the classifier is retrained each

generation using all previously evaluated designs as training

data. The abundance of training data as the algorithm reaches

convergence likely aids in the ability of the classifiers to

accurately determine “good” and “bad” designs.

A result not specifically covered in this work, is the continued

decrease in objective function evaluations when a classifier is

included. In general, the number of objective function

calculations was reduced by a considerable amount. While in

these Test Problems the incorporation of a classifier is

superfluous and increases computation time due to repeated

classifier training, modern complex engineering problems

require non-trivial functions. In these instances, the reduction

in objective function calculations is necessary for the timely

identification of non-dominated designs.

A requirement of this analysis is knowledge of the Pareto

frontier shape a priori. While this allowed for the determination

of the most appropriate machine learning classifier of the tested

classifiers, it does not provide a means for predicting the shape

of a Pareto frontier. Rather, future work is needed to accurately

predict the shape of a Pareto frontier and identify the exact

problem characteristics that result in such a shape. This will aid

in the selection of a machine learning classifier.

REFERENCES

[1] M. Hauschild and M. Pelikan, "An Introduction and

Survey of Estimation of Diistribution Algorithms,"

Swarm and Evolutionary Computation, vol. 1, no. 2011,

pp. 111-128, 2011.

[2] P. Backlund, D. Shahan and C. C. Seepersad, "Classifier-

Guided Sampling for Discrete Variable, Discontinuous

Design Space Exploration: Convergence and

Computational Performance," Engineering Optimization,

vol. 47, no. 5, pp. 579-600, 2015.

[3] K. Zeliff, W. Bennette and S. Ferguson, "Multi-Objective

Composite Panel Optimization Using Machine Learning

Classifiers and Genetic Algorithms," in ASME 2016

International Design Engineering Technical Conferences

and Computers and Information in Engineering

Conference, Charlotte, 2016.

[4] A. Bekasiewicz, S. Koziel and W. Zieniutycz, "Design

Space Reduction for Expedited Multi-Objective Design

Optimization of Antennas in Highly Dimensional

Spaces," in Solving Computationally Expensive

Engineering Problems, Switzerland, Springer

International Publishing, 2014, pp. 113-147.

[5] C. Bucher, "Adaptive Sampling- an Iterative Fast Monte

Carlo Procedure," Structural Safety, vol. 5, no. 2, pp. 119-

126, 1988.

[6] J. Kennedy and R. Eberhart, "Particle Swarm

Optimization," in IEE International Conference on

Neural Networks, 1995.

[7] E. Aarts, J. Korst and W. Michiels, "Simulated

Annealing," in Search Methodologies: Introductory

Tutorials in Optimization and Decision Support

Techniques, New York, Springer Science+Business

Media, Inc, 2005, pp. 187-210.

[8] K. Deb, "A Fast and Elitist Multiobjective Genetic

Algorithm: NSGA-II," IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182-197,

2002.

[9] P. Larranaga, "A Review on Estimation of Distribution

Algorithms," in Genetic Algorithms and Evolutionary

 17 Copyright © 2017 by ASME

Computation, New York, Springer Science+Business

Media, 2002, pp. 57-100.

[10] D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene and

K. Crombecq, "A Surrogate Modeling and Adaptive

Sampling Toolbox for Computer Based Design," The

Journal of Machine Learning Research, vol. 11, pp.

2051-2055, 2010.

[11] M. Tabatabaei, J. Hakanen, M. Hartikainen, K. Miettinen

and K. Sindhya, "A Survey on Handling Computationally

Expensive Multiobjective Optimization Problems Using

Surrogates: Non-nature Inspired Methods," Structural

and Multidisciplinary Optimization, vol. 52, no. 1, pp. 1-

25, 2015.

[12] J. Han and M. Kamber, Data Mining: Concepts and

Techniques, 2001.

[13] P. Hart, "The condensed nearest neighbor rule," IEEE

Transactions on Information Theory, vol. 14, pp. 1966-

1967, 1968.

[14] H. Zhang, "The Optimality of Naive Bayes," AA, vol. 1,

no. 2, 2004.

[15] R. Quinlan, C4.5: programs for machine learning, 1992.

[16] L. Breiman, "Random Forest," Machine Learning, vol.

45, no. 5, pp. 1-35, 1999.

[17] E. Zitzler, K. Deb and L. Thiele, "Comparison of

Multiobjective Evolutionary Algorithms: Empirical

Results," Evoluationary Computation, vol. 8, no. 2, pp.

173-195, 2000.

[18] S. Baskar and P. N. Suganthan, "A Novel Concurrent

Particle Swarm Optimization," in Proceedings of the

2004 Congress on Evolutionary Computation, Portland,

2004.

[19] J. Vesterstorm and R. Thomsen, "A comparative study of

differential evolution, particle swarm optimization, and

evolutionary algorithms on numerical benchmark

problems," in Proceedings of the 2004 Congress on

Evolutionary Computation, Portland, 2004.

[20] E. Zitzler and L. Thiele, "Multiobjective Evolutionary

Algorithms: A Comparative Case Study and the Strength

Pareto Approach," IEEE Transactions on Evolutionary

Computation, vol. 3, no. 4, pp. 257-271, 1999.

[21] E. Zitzler and L. Thiele, "Multiobjective Optimization

Using Evolutionary Algorithms - A Comparative Case

Study," in Fifth International Converence on Parallel

Problem Solving from Nature, Berlin, 1998.

[22] M. K. Buckland and G. Fredric, "The Relationship

Between Recall and Precision," JASIS, vol. 45, no. 1, pp.

12-19, 1994.

