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ABSTRACT 
Previous work tested a multi-objective genetic algorithm that 

was integrated with a machine learning classifier to reduce the 

number of objective function calls. Four machine learning 

classifiers and a baseline “No Classifier” option were evaluated. 

Using a machine learning classifier to create a hybrid 

multiobjective genetic algorithm reduced objective function 

calls by 75-85% depending on the classifier used. This work 

expands the analysis of algorithm performance by considering 

six standard benchmark problems from the literature. The 

problems are designed to test the ability of the algorithm to 

identify the Pareto frontier and maintain population diversity. 

Results indicate a tradeoff between the objectives of Pareto 

frontier identification and solution diversity. The “No 

Classifier” baseline multiobjective genetic algorithm produces 

the frontier with the closest proximity to the true frontier while 

a classifier option provides the greatest diversity when the 

number of generations is fixed. However, there is a significant 

reduction in computational expense as the number of objective 

function calls required is significantly reduced, highlighting the 

advantage of this hybrid approach. 

INTRODUCTION 
Objective function complexity, associated computation time 

and large design spaces provide the impetus for reducing the 

number of objective function evaluations required by modern 

optimization algorithms. To reduce computational cost, 

designers must often choose between using a low fidelity meta-

model (reduced run time at the tradeoff of performance estimate 

accuracy) or using a high fidelity model (increased run time 

with greater accuracy in performance estimate). This tradeoff 

has resulted in the creation of various algorithms with the goal 

of reducing the number of function evaluations while still 

identifying optimal designs. Different approaches have resulted 

in optimization algorithms that include probability distributions 

[1], machine learning classifiers [2, 3, 4], and improved meta-

models [5]. Each of these methods results in a reduced number 

of objective function evaluations and outperforms the standard 

heuristic optimization algorithm configurations for Particle 

Swarm Optimization [6], Simulated Annealing [7] and Genetic 

Algorithms [8] in multiobjective engineering design 

optimization problems.  

The algorithm being benchmarked in this work was originally 

developed and proposed in [3]. A flowchart of the algorithm is 

shown in Figure 1. This algorithm combines a multi-objective 

genetic algorithm (MOGA) and a machine learning classifier. 

The algorithm follows the general process of a MOGA by 

starting with a random initial population, and proceeds through 

selection, crossover and mutation. After mutation, a classifier is 

trained using the previously evaluated designs where “good” 

designs are closer to the Pareto frontier and “bad” designs are 

farther from the Pareto frontier. The classifier is then used to 

label the child designs as “good” or “bad”. Only “good” designs 

are evaluated, while “bad” children designs are discarded. Once 

the “good” child designs are evaluated they are added to the 

population, and the population is culled to maintain a consistent 

size. All evaluated designs are added to a repository that is used 

to retrain the classifier each generation. As the number of 

designs in the repository grows the classifier has more 

information for training purposes.  

The algorithm in Figure 1 was tested in [3] using a composite 

panel optimization problem in which the load cases of 

compression and uniaxial tension were evaluated for a 

composite panel of 10 layers with orientation angles ranging 

from -90 to 90 degrees in increments of 10 degrees. Four 

different types of classifiers, and a baseline, no-classifier option 

were incorporated. Results from this multiobjective 

optimization problem demonstrated that this hybrid approach 

achieved a minimum reduction in objective function 

evaluations of 75% when compared to the no-classifier option, 

as shown in Table 1. 
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Figure 1: Algorithm for Benchmark Exploration [3] 

Table 1: Summary of Evaluation Reduction when Compared to 

the No Classifier Option [3] 

Classifier Evaluation Reduction 

Decision Tree 88% 

k-Nearest Neighbor 85% 

Naïve Bayes 75% 

Random Forest  84% 

The results from this problem were encouraging but only 

reflected the outcome of a single multiobjective optimization 

problem. The objective of this paper is to further assess 

performance of this approach across six standard benchmark 

problems from the literature. Using these benchmark problems, 

this work determines the problem type in which the following 

machine learning classifiers perform "best": k-Nearest 

Neighbor, Decision Tree, Naïve Bayes and Random Forest. 

BACKGROUND 
This work leverages various aspects of optimization and 

machine learning. The following subsections provide relevant 

information on the optimization and machine learning aspects 

of this work. 

Function Reducing Optimization Methods 
Evolutionary optimization algorithms use prior data to slowly 

move the optimal solution to the true global optimum. These 

algorithms generally require large numbers of expensive 

function evaluations and take considerable time to identify the 

set of non-dominated solutions. 

Algorithms 
Several optimization algorithms for minimizing objective 

function evaluations exist. Examples include Estimation of 

Distribution Algorithms (EDA) [1], Design Space Reduction 

[4], Surrogate-Based Optimization [5], and Classifier Guided 

Sampling (CGS) [2]. Each category of algorithm takes a 

slightly different approach to optimal solution identification 

when compared to the method described in [3]. 

EDAs build statistical models from designs of the previous 

iteration to identify promising candidate solutions [1]. There are 

no crossover or mutation operators like those that exist in 

typical evolutionary algorithms [9]. This is similar to the 

approach described in [3], as previous designs are used for 

predicting whether a design is close to the frontier. However, 

unlike EDAs, the approach implemented in [3] includes a 

crossover and mutation operator. 

Design space reduction identifies ill-suited regions of the 

design space and removes those regions from consideration. 

This results in a restricted design space and allows the 

algorithm to identify optimal designs through fewer expensive 

evaluations [4]. In the method presented in [3], the classifiers 

perform the action of reducing the design space through 

evaluated designs. The classifiers learn which regions of the 

design space result in poor solutions and label designs in those 

regions as “bad”. 

Surrogate-Based Optimization requires the development and 

testing of a meta-model to reduce the number of expensive 

evaluations [5, 10, 11]. The objective of the work in [3] is to 

avoid the use of a meta-model and instead reduce the number 

of expensive objective function evaluations. 

In CGS, a weighted-sum single objective optimization problem 

is developed in which a Bayesian network classifier is used to 

predict whether child designs will improve the objective 

functions or not. Results indicate the classifier significantly 

reduces the number of objective function evaluations and 

converges upon the optima at a faster rate than genetic 

algorithms [2]. 

The work in [3] expands upon the concepts proposed in CGS 

through the addition of a second objective function and 
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completes a comparison of multiple classifiers. For the 

optimization problem used in [3], the Random Forest classifier 

completed the optimization in the fewest objective function 

calculations and performed better than the other classifiers. 

These algorithms boast improved results over standard 

optimization algorithms. However, the method of reduction is 

highly problem dependent. The approach used for the removal 

of certain areas of the design space for one problem may not 

hold for a second unrelated problem. For example, CGS 

incorporates a Naïve Bayes classifier, but the results presented 

in [3] indicated that a Naïve Bayes classifier is not best suited 

for use in composite panel optimization. 

Classification 
Given the wide variety of available classification techniques, 

the correct learning algorithm for a specific application is not 

always apparent. In machine learning classification, the 

objective is to learn a concept from historical data, called 

training data, that can be used to assign previously unseen data 

points, or instances, to one of two or more categories, called 

classes [12]. It is believed that these types of models can be used 

to approximate the behavior of complex functions, and as a 

result, help isolate areas in design spaces that warrant further 

investigation by labeling new designs as “good” or “bad”. Even 

though a specific classification model will likely not be a 

perfect facsimile of the actual problem, the idea is that the 

model may induce enough information about the underlying 

structure of the problem to isolate areas in the design space that 

deserve further investigation. In this work, classification 

models are explored from each of the following overarching 

families: instance-based classifiers, statistical classifiers, rule-

based classifiers, and ensemble classifiers. 

k-Nearest Neighbors (kNN)  
Instance-based classifiers never truly build a model, but instead 

rely on their training data to classify new instances. In the case 

of the k-Nearest Neighbors (kNN) classifier [13], an unlabeled 

instance is classified according to the majority class found in 

the k training instances closest to its location in the feature 

space. Although instance based classifiers are simplistic, they 

do perform well when data points belonging to different classes 

are well separated in the feature space. However, it is important 

to use a distance metric that can uncover the separation between 

classes in order to obtain accurate classifications. 

Naïve Bayes  
Naïve Bayes is a statistical classification model that requires 

simple probability calculations to predict the class label of a 

new instance, and it has been shown to have good performance 

for a wide variety of applications [14]. A Naïve Bayes model 

makes the assumption that the effect of each attribute on the 

predicted class is independent of the other attributes [12]. This 

assumption simplifies the required calculations of the classifier, 

but is likely untrue in practice. Therefore, naïve Bayes performs 

best when an instance’s attributes affect its class outcome with 

high levels of independence. 

Decision Trees 
Rule-based classifiers follow a series of "if-then" rules applied 

to the different attributes of an instance. Decision trees fit into 

this family because they are easily deconstructed into rules. 

Decision tree algorithms discover their tree in a top-down 

manner by choosing attributes one at a time and dividing the 

training instances into subsets according to the values of their 

attributes. The most important attribute is chosen as the top split 

node, the second most important attribute is considered at the 

next level, and so forth. For example, in the popular C4.5 

algorithm [15], attributes are chosen to maximize the 

information gain ratio in the split. This is an entropy measure 

designed to increase the average class purity of the resulting 

subsets of instances as a result of the sequential splits. Decision 

trees have good predictive accuracy when the training data’s 

attributes have a hierarchical structure in regard to determining 

class label. Still, decision trees are prone to overfitting [12]. 

Random Forest 
Ensemble classifiers leverage multiple classification models to 

make a prediction. This is done by allowing each individual 

model to vote for what they believe should be the class label of 

the new instance, and then combing the votes according to some 

scheme. Random forests are a popular ensemble technique that 

creates many decision trees and uses a majority wins rule to 

classify a new instance. In random forest, decision trees are 

created using a random subset of the training data’s attributes 

and instances [16]. It has been found that random forests can 

achieve very good accuracy, especially for tasks on which a 

single decision tree would already have good performance.  

In review, the correct classifier to use for a particular 

application is not always apparent and depends on the structure 

of the underlying problem.  Still, each classification model has 

its own strengths. kNN has good performance when the classes 

are separated in the design space. Naïve Bayes has good 

performance when there are high levels of independence 

between the problem’s attributes. Decision Trees have good 

performance when classes can be segregated by creating top-

down separations of the data. Finally, Random Forests can 

improve upon the performance of single-model classifiers. The 

objective of this paper is to identify problem characteristics 

contributing to the success or failure of a classifier. 

METHODOLOGY 
The approach taken in this work is outlined in Figure 2. The 

first step requires selecting an algorithm for evaluation and a 

problem with which to test. Problem set-up describes the 

process of setting or selecting the necessary options with the 

algorithm and problem choice. During the evaluation step, the 

algorithm is run. To adequately compare the results of the 

evaluation step, a set of metrics must be identified and 

calculated. The following subsections give greater detail into 

each of the steps of the methodology. 
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Figure 2: Comparison Methodology 

Problem Selection 
The algorithm analyzed in this approach is based off an NSGA-

II [8] MOGA. This hybridized MOGA departs from traditional 

methods by using a classification model to identify which child 

designs are worthy of evaluation. The classifier is trained after 

each generation to incorporate knowledge uncovered from 

previously evaluated designs. For classifier training purposes, 

the non-domination rank value is set at 5. Meaning, when 

training each classifier, those previously evaluated designs with 

a rank of 5 or less are deemed “good” while those with a non-

dominated rank greater than 5 are deemed “bad”. After training 

the model and classifying the child designs, only child designs 

predicted to be “good” are evaluated. Further details regarding 

the approach used can be found in [3]. 

Problem Set-up 
The six benchmark problems identified in [17] are used to 

compare five different MOGAs. Four of the MOGA cases 

incorporate one of the machine learning classifiers discussed in 

the previous section. Additionally, there is a “No Classifier” 

MOGA that is treated as a baseline. These problems highlight 

the known difficulties of genetic algorithms and other 

evolutionary algorithms to identify the Pareto frontier and 

maintain population diversity [8]. In standard form, each of the 

problems has the objectives given in Equation (1). 

 

Minimize: 

Subject to: 

where 

𝑇 = (𝑓1(𝑥), 𝑓2(𝑥)) 

𝑓2 = 𝑔(𝑥) ∗ ℎ(𝑥) 

𝑥 = (𝑥1, … , 𝑥𝑚) 

(1) 

Evaluation 
Each problem and classifier combination was run ten times and 

convergence was set at 100 generations. This maximum 

generation limit serves only as a means to terminate the 

algorithm after a set number of iterations. The No Classifier 

MOGA is also run for 100 generations and the goal is to 

compare solutions with respect to the true Pareto frontier for 

each benchmark problem. The population size was held 

constant at 100, arithmetic crossover is used with a crossover 

rate of 0.8 and the mutation rate is set at 0.1.  

K-Nearest Neighbor, naïve Bayes, C4.5 decision tree and 

random forest classifiers were used with the objective of 

reducing the number of required function evaluations. More 

specifically, kNN was implemented with a Euclidean distance 

metric and one neighbor, that is k = 1. Random forests consisted 

of 100 trees each. The classifier training data attributes are the 

design variables associated with each of the benchmark 

problems. The class label corresponds to the proximity of the 

design with the current set of non-dominated results. That is, 

designs closer to the Pareto frontier are labeled “good” while 

those further from the frontier are labeled “bad.” 

Calculate Metrics 
While many algorithms significantly reduce the number of 

expensive objective function algorithms. Little work exists 

comparing the algorithms and the function reducing, problem 

specific aspects of the algorithm. However, there exists much 

work comparing optimization algorithms without the attempts 

to reduce function evaluations through a machine learning 

classifier. 

Baskar and Suganthan [18] compared a concurrent particle 

swarm optimization (CONPSO) algorithm with a standard 

particle swarm optimization algorithm through a series of six 

benchmark continuous optimization problems. The results 

indicated the CONPSO algorithm clearly outperformed the 

standard algorithm. Comparisons were conducted in terms of 

solution quality, average computation time and solution 

consistency. 

In [19], a suite of 34 benchmarking problems are used to 

compare three different optimization algorithms. Performance 

is compared through the speed at which an algorithm reaches 

the optimum and the differential evolution algorithm is found 

to be the most robust. 

In another optimization algorithm comparison, Zitzler et al 

compare eight different multi-objective algorithms on six test 

problems designed to highlight an algorithm’s ability (or 

inability) to identify the Pareto frontier and maintain solution 

diversity. Results are compared by measuring the dominated 

area of the solution space, or hypervolume, and the percentage 

of one set of results that covers, or dominates, another [17]. 

These complimentary metrics of performance were presented in 

[20, 21]. 

The metrics provided in [17] are used for comparison of the 

identified Pareto frontiers for each of the 6 benchmark 

problems. Equation (2) gives the distance to the true Pareto 

frontier, 𝑋̅ from an identified Pareto frontier, 𝑋′. To calculate 

𝑀1 the minimum distance between each point in the identified 

frontier and true frontier is calculated, summed and divided by 

the cardinality, or number of points in the identified set. Smaller 

values of 𝑀1 are “better” as they indicate the identified frontier 

is closer in proximity to the true Pareto frontier. 
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𝑀1(𝑋′) =
1

|𝑋′|
∑ min{||𝑎′ − 𝑎̅||: 𝑎̅ ∈ 𝑋̅}

𝑎′∈𝑋′
 (2) 

Equation (3) considers the distribution and density of the 

identified Pareto frontier. The neighborhood parameter, 𝜎 

indicates the number of design vectors in the identified 

neighborhood. The higher the value of 𝑀2 the greater the 

distribution and density of identified Pareto points and 

therefore, the “better” the solution. Since the number of Pareto 

points influences the value for 𝑀2 these values are normalized 

between 0 and 1 for better comparison. 

𝑀2(𝑋′) =
1

|𝑋′| − 1
∑ |{𝑏′ ∈ 𝑋′; ||𝑎′ − 𝑏′|| > 𝜎}|

𝑎′∈𝑋′

 (3) 

Equation (4) measures the range of the identified Pareto 

frontier. In the case of two objectives, 𝑀3 is the distance 

between the outermost two designs in the solution space.  

𝑀3(𝑋′) = √∑ max{||𝑎𝑖
′ − 𝑏𝑖

′|| : 𝑎′, 𝑏′ ∈ 𝑋′}
𝑚

𝑖=1
 (4) 

Further analysis examines the precision and recall of the 

classifier for the final generation (trained classifier) of the 

algorithm. In this context, precision is the percentage of designs 

predicted by the classifier to be “bad” that are actually “bad”. 

Recall is the percentage of actually “bad” designs that are 

predicted to be “bad” [22]. Through the analysis of the classifier 

and hypervolume, we extract those classifiers best suited for 

each of the benchmark problems. 

Compare Results 
Comparisons are conducted on a per benchmark test problem 

basis as problem characteristics influence the result and cross-

problem comparison may be biased. 

RESULTS FOR THE SIX BENCHMARK PROBLEMS 
Each Test Problem was run ten times using the previously 

discussed classifiers and the No Classifier option. The results in 

the following subsections are the aggregation of each of the ten 

runs.  

Using the values given in [17] for 𝑔(𝑥) and the ranges 

associated with 𝑥1, a true frontier consisting of 100 Pareto 

points evenly spaced along 𝑓1 was calculated for Test Problems 

1-4 and 6. Due to the nature of Test Problem 5, the number of 

Pareto points of the true frontier has an upper limit of 31, so the 

entire frontier was enumerated for comparison. 

Test Problem 1 – Convex Pareto frontier 
The first Test Problem of the benchmark set has a convex Pareto 

frontier which is found when 𝑔(𝑥) = 1. Equation (5) gives the 

necessary functions for minimization where 𝑚 = 30 and 𝑥𝑖 ∈

[0,1]. 

 

𝑓1 = 𝑥1 

𝑔(𝑥2, … , 𝑥𝑚) = 1 + 9 ∗ ∑
𝑥𝑖

𝑚 − 1

𝑚

𝑖=2
 

ℎ(𝑓1, 𝑔) = 1 − √𝑓1/𝑔 
(5) 

After running the algorithm 10 times for each of the identified 

classifiers and the No Classifier option with a convergence 

criteria of 100 generations, the aggregate Pareto frontier was 

identified on a per classifier basis and is displayed in Figure 3. 

Given the defined termination criteria, none of the aggregate 

Pareto frontiers reached the true Pareto frontier. 

The No Classifier frontier produces the lowest values consistent 

with the minimization objective. However, the no-classifier 

frontier spans less than half of the feasible solutions space for 

the frontier. This is also true of the Decision Tree, kNN and 

Random Forest frontiers. Only the naïve Bayes classifier 

produces a frontier that covers a significant range of the solution 

space. 

 
Figure 3: Test Problem 1 Aggregate Pareto Frontiers 

Table 2 provides summary information for each of the 

aggregate Pareto frontiers displayed in Figure 3. The No 

Classifier frontier has the smallest extent and the naïve Bayes 

frontier the largest. From a proximity standpoint, the No 

Classifier frontier is closest to the true frontier. The number of 

designs in the frontier plays a role in the diversity measurement. 

Frontiers consisting of more Pareto points are likely to have 

larger values for diversity. Therefore, we disregard diversity for 

comparison.  

Despite the differences in metrics, the identified aggregate 

Pareto frontiers in Figure 3 are comparable. That is, there exist 

trade-offs between each of the classifier frontiers and no 

frontier is superior to all others. The baseline, No Classifier 

MOGA required over 15,000 function evaluations to produce 

the frontier shown. Naïve Bayes, the frontier with the largest 

extent, is achieved in slightly less than 1,000 function 
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evaluations. This is a function evaluation savings of 93.4%, 

achieved because the children designs classified as being of 

poor quality are not evaluated. kNN, which produced the 

frontier with the greatest diversity measurement and most 

unique designs, saved 25.6% in function evaluations compared 

to the No Classifier MOGA and nearly tripled the next highest 

number of function evaluations required by Random Forest. 

Table 2: Test Problem 1 Metrics for Performance Comparison 

 
Decision 

Tree 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Random 

Forest 

No 

Classifier 

Unique 

Designs 
137 184 24 104 39 

Hyper-

Volume 
6.00 6.34 8.21 9.14 3.33 

Proximity

𝑴𝟏 
2.99 3.27 2.35 3.57 3.07 

Diversity

𝑴𝟐 
15572 30586 522 7802 1256 

Extent 

𝑴𝟑 
2.45 2.46 2.88 2.05 1.53 

Function 

Count 
2988 11445 1019 3639 15382 

Function 

Call 

Percent 

Reduction 

80.6% 25.6% 93.4% 76.3% -- 

A secondary goal of this work is to evaluate the effectiveness 

of the classifier in terms of predictive ability. As previously 

discussed, this is done using precision and recall. Figure 4 

shows the average precision for each classifier at each 

generation. All four classifiers start with relatively high 

precision values, but experience a severe reduction in precision 

after a few generations. The low average precision values 

indicate an inability of the classifier to accurately differentiate 

“good” designs from “bad”. 

 
Figure 4: TP 1 Average Classifier Precision per Generation 

Similarly, Figure 5 displays, for each generation and classifier, 

the average percentage of actually “bad” designs that are 

predicted to be “bad”. All classifiers experience an increase in 

recall in the early generations of the algorithm. However, kNN, 

Decision Tree and Random Forest decrease in average recall as 

the algorithm reaches the stopping criteria. Naïve Bayes reaches 

and maintains nearly perfect recall around generation 30 until 

the convergence criteria of 100 generations. 

 
Figure 5: TP 1 Average Classifier Recall per Generation 

Test Problem 2 – Nonconvex Pareto frontier 
Opposite to Test Problem 1, the second Test Problem has a 

nonconvex frontier also found when 𝑔(𝑥) = 1. The specifics for 

Test Problem 2 are given in Eq. (6) where 𝑚 = 30 and 𝑥𝑖 ∈ [0.1]. 

 𝑓1 = 𝑥1 

𝑔(𝑥2, … , 𝑥𝑚) = 1 + 9 ∗ ∑
𝑥𝑖

𝑚 − 1

𝑚

𝑖=2
 

ℎ(𝑓1, 𝑔) = 1 − (
𝑓1

𝑔
)

2

 

(6) 

The aggregate non-dominated solutions from the combination 

of runs are shown in Figure 6. The aggregate Pareto frontiers 

favor lower values for 𝐹1 and higher values for 𝐹2. As a result 

the generated frontiers are sparse as the values for 𝐹1 increase. 

Further, the aggregate Pareto frontiers do not fully capture the 

nonconvex behavior of the true Pareto frontier. Instead, the 

aggregate frontiers appear closer to a straight line than convex. 

However, this is a scale problem and slight nonconvex behavior 

is apparent when the scale for 𝐹2 is altered. 

Once again, the No Classifier option Pareto frontier dominates 

those frontiers of the other classifiers. As with Test Problem 1, 

none of the algorithms reach the actual Pareto frontier given the 

convergence criteria specified. Future work will change the 

convergence criteria so that the number of generations is 

increased, and a comparison will also be completed when the 

number of function calls used is held constant. 
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Figure 6: Test Problem 2 Pareto Frontiers 

To better compare the results of Figure 6, the results displayed 

in Table 3 describe the proximity of the identified frontier to the 

true Pareto frontier, and the diversity and extent of the identified 

frontier. In pursuit of function count reduction, the naïve Bayes 

classifier once again provides the greatest reduction in function 

calls with an average of over 95% savings. The naïve Bayes 

classifier also produces the Pareto frontier with the greatest 

extent, nearly doubling that of the No Classifier MOGA. 

Unfortunately, in the context of unique designs, hypervolume, 

proximity and diversity, the naïve Bayes classifier 

underperforms the other classifier options. 

Table 3: Test Problem 2 Metrics for Performance Comparison 

 
Decision 

Tree 

k-Nearest 

Neighbor 

Naïve 

Bayes 
Random 

Forest 

No 

Classifier 

Unique 

Designs 
37 87 12 60 82 

Hyper-

Volume 
14.09 8.45 13.93 0.16 11.70 

Proximity

𝑴𝟏 
3.39 3.38 3.49 3.67 3.44 

Diversity

𝑴𝟐 
1082 5664 126 2482 4532 

Extent 

𝑴𝟑 
1.23 0.99 1.49 1.94 1.23 

Function 

Count 
2184 12120 707 3322 15389 

Function 

Call 

Percent 

Reduction 

85.8% 21.2% 95.4% 78.4% -- 

In consideration of the “best” performing classifier in terms of 

precision and recall, Figure 7 displays the average precision of 

each classifier for each of the 100 generations. Classifier 

precision reduces severely in the first 10 generations. Initially, 

all classifiers boast average precision values of nearly 100%, 

but as the generations continue, the precision appears to plateau 

between 0.2 and 0.4, depending on the classifier. Random 

Forest experiences an even larger decline in average precision 

in the final generations of the algorithm. kNN precision values 

suffer greatly after generation 40. These low precision values 

indicate that the classifiers are predicting several “good” 

designs as “bad” and this is likely responsible for the lack of 

nonconvex behavior found in the Pareto frontiers in Figure 6. 

 
Figure 7: TP 2 Classifier Average Precision per Generation 

Further analysis of the classifiers for Test Problem 2 produced 

the recall results presented in Figure 8. Despite the inability of 

the classifiers to accurately differentiate between “good” and 

“bad” designs, the classifiers do appropriately classify most 

“bad” designs as “bad” with the exception of kNN. 

Unfortunately, the high recall value is likely a result of the 

classifiers predicting all designs as “bad”. In combination with 

the poor average precision values, the kNN classifier also 

produces poor average recall values. The combination of these 

low values is likely the cause of the large number of expensive 

function evaluations. 

 
Figure 8: TP 2 Classifier Average Recall per Generation 
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Test Problem 3 – Discrete solution space 
Test Problem 3 seeks to examine the ability of an optimization 

algorithm to handle a discrete solution space as the Pareto 

frontier consists of several distinct convex pieces. Equation (7) 

shows the necessary components of the minimization problem 

where 𝑚 = 30 and 𝑥𝑖 ∈ [0,1]. 

 𝑓1 = 𝑥1 

𝑔(𝑥2, … , 𝑥𝑚) = 1 + 9 ∗ ∑
𝑥𝑖

𝑚 − 1

𝑚

𝑖=2
 

ℎ(𝑓1 , 𝑔) = 1 − √
𝑓1

𝑔
− (

𝑓1

𝑔
) sin(10𝜋𝑓1) 

(7) 

The aggregate Pareto frontiers for Test Problem 3 are shown in 

Figure 9. Once again, the No Classifier frontier is concentrated 

toward the smaller values for 𝐹1 and does not expand into the 

larger function values. On the other hand, the naïve Bayes 

frontier spans the same length of the solution space as the true 

frontier although the values for 𝐹2 are larger. The lack of 

convergence to the true frontier is a result of the prematurely 

enforced convergence of 100 generations. 

 
Figure 9: Test Problem 3 Aggregate Pareto Frontiers 

Further investigation into the frontiers in Figure 9 results in the 

metrics presented in Table 4. As with the previous test 

problems, naïve Bayes produces the frontier with the greatest 

extent and the fewest number of function evaluations with a 

savings of 93%. Additionally, the naïve Bayes frontier has the 

smallest proximity value and is therefore, closest to the true 

frontier. However, in comparison with the other classifier 

options, naïve Bayes is outperformed by Decision Tree and 

Random Forest in terms of hypervolume and all other options 

in terms of diversity. From the results in Table 4, no classifier 

is clearly superior to all other classifiers.  

Table 4: Test Problem 3 Metrics for Performance Comparison 

 
Decision 

Tree 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Random 

Forest 

No 

Classifier 

Unique 

Designs 
116 170 91 128 106 

Hyper-

Volume 
6.90 8.67 7.39 5.89 6.93 

Proximity 

(𝑴𝟏) 
2.67 3.04 2.20 2.54 3.06 

Diversity 

(𝑴𝟐) 
12068 25270 6846 14434 9706 

Extent 

(𝑴𝟑) 
2.72 2.75 3.72 3.17 1.84 

Function 

Count 
3755 13802 1086 4723 15402 

Function 

Call 

Percent 

Reduction 

75.6% 10.4% 93% 69.3% -- 

To explore the precision and recall values for Test Problem 3, 

Figure 10 displays the average precision for each of the 

classifiers for each of the 100 generations. As is consistent 

across Test Problems 1 and 2, the average precision for Test 

Problem 3 severely decreases in the early generations. Naïve 

Bayes holds somewhat steady at 0.4 across all generations 

while Decision Tree, kNN and Random Forest continue to 

decline. The mostly constant average precision for naïve Bayes 

may explain the large computational savings seen in Table 4. 

The Decision Tree and Random Forest classifiers display 

similar behavior in that there is a steady decrease in precision 

as the number of generations increase and then the average 

values begin to increase with the larger generations. This 

similar behavior is likely a result of the Decision Tree as a 

Random Forest consists of several Decision Trees and a voting 

mechanism. This indicates that Decision Trees are not well 

suited for problems with trigonometric functions. 

 
Figure 10: TP 3 Classifier Average Precision per Generation 
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In a similar manner, Figure 11 shows the average recall for each 

generation for each classifier. While naïve Bayes does not 

initially perform “best”, naïve Bayes continually improves its 

average recall before plateauing at nearly perfect recall. On the 

other hand, Random Forest quickly provides the highest 

average recall values, but continually decreases in average 

recall as generations increase. Similarly, the average recall 

values for Decision Tree decline as the number of generations 

increases. kNN appears almost piecewise in terms of recall 

values. The nearly perfect prediction of “bad” designs as “bad” 

for the naïve Bayes classifier likely plays a role in the large 

reduction in expensive function evaluations. This means the 

classifier is ensuring no “bad” designs are evaluated. 

 
Figure 11: TP 3 Classifier Average Precision per Generation 

Test Problem 4 - Multimodality 
The fourth Test Problem tests the ability of the algorithms to 

handle multimodality as there exist 219 local Pareto frontiers. 

The global Pareto frontier occurs when 𝑔(𝑥) = 1. Equation (8) 

shows the functions for 𝑓1, 𝑔 and ℎ. In Eq. (8), 𝑚 = 10 while 

𝑥1 ∈ [0,1] and 𝑥2, … , 𝑥𝑚 ∈ [−5,5]. 

𝑓1 = 𝑥1 

𝑔(𝑥2, … , 𝑥𝑚) = 1 + 10(𝑚 − 1) + ∑ (𝑥𝑖
2 − 10 cos(4𝜋𝑥𝑖))

𝑚

𝑖=2
 

ℎ(𝑓1, 𝑔) = 1 − √𝑓1/𝑔 

(8) 

Figure 12 shows the aggregate Pareto frontiers identified by 

each of the classifiers options and the No Classifier MOGA. 

Clearly, the algorithm, including the baseline MOGA, struggles 

with the multimodality aspect of the test problem. The 

aggregate Pareto frontiers do not mimic the behavior of the true 

frontier and are concentrated around exceptionally small values 

for 𝐹1 and extremely large values for 𝐹2. 

 
Figure 12: Test Problem 4 Aggregate Pareto Frontiers 

From Figure 12, it is difficult to ascertain which Pareto frontiers 

are “better” as they clearly do not mimic the behavior of the true 

frontier. Table 5 summarizes metrics for each of the aggregate 

Pareto frontiers. The naïve Bayes classifier produces the 

greatest reduction in function calls with over 83% and is 

comparable to the No Classifier MOGA for the metrics of 

proximity and extent. However, the No Classifier frontier 

consists of several more unique designs and boasts a much 

larger hypervolume. The large hypervolume calculation is a 

result of the single Pareto point in Figure 12 with a value for 𝐹1 

greater than 0.2. 

Table 5: Test Problem 4 Metrics for Performance Comparison 

 
Decision 

Tree 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Random 

Forest 

No 

Classifier 

Unique 

Designs 
68 5 35 27 169 

Hyper-

Volume 
76.96 53.16 144.29 87.40 822.73 

Proximity 

𝑴𝟏 
80.23 68.47 66.23 98.92 70.07 

Diversity 

𝑴𝟐 
4110 20 1186 702 25772 

Extent 

𝑴𝟑 
135.4 23.34 123.01 124.50 151.22 

Function 

Count 
5571 12805 2593 6910 15408 

Function 

Call 

Percent 

Reduction 

63.8% 16.9% 83.2% 55.2% -- 

Despite the poorly identified Pareto frontiers displayed in 

Figure 12, the classifiers performed well in terms of average 

precision as shown in Figure 13. Unlike previous test problems, 

the average precision values increase after the first few 

generations, except for naïve Bayes. In terms of consistency, 

however, naïve Bayes appears to provide the most consistent 
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average values for precision while the remaining classifiers 

fluctuate between high and low average precision values. 

 
Figure 13: TP 4 Classifier Average Precision per Generation 

Similarly, the average classifier recall for each generation is 

displayed in Figure 14. The average recall values have nearly 

inverse behavior of the average precision values. For example, 

naïve Bayes consistently has the lowest average precision 

values and the highest average recall values. kNN has the 

highest average precision values and the lowest average recall 

values. This inverse behavior implies the classifier does not 

identify many “bad” designs, but when it does, it accurately 

classifies them.  

 
Figure 14: TP 4 Classifier Average Recall per Generation 

Test Problem 5 – Binary design string 
Unlike the other test problems, in Test Problem 5 each design 

variable is a binary string. As a result, the crossover method for 

Test Problem 5 is k-point crossover with k = 3. Equation (9) 

gives the necessary sub-functions for the minimization problem 

where 𝑚 = 11 and 𝑥𝑖 ∈ [0,1]. The first design variable, 𝑥1 is a 

binary string of length 30 while the remaining variables are of 

length 5. The Pareto frontier is formed when 𝑔(𝑥) = 10. 

 𝑓1(𝑥1) = 1 + 𝑢(𝑥1) 

𝑔(𝑥2, … , 𝑥𝑚) = ∑ 𝑣(𝑢(𝑥𝑖))
𝑚

𝑖=2
 

ℎ(𝑓1, 𝑔) = 1/𝑓1 

where 𝑢(𝑥𝑖) gives the number of ones in 𝑥𝑖 

and 

𝑣(𝑢(𝑥𝑖)) = {
2 + 𝑢(𝑥𝑖) 𝑖𝑓 𝑢(𝑥𝑖) < 5

1 𝑖𝑓 𝑢(𝑥1) = 5
} 

(9) 

Figure 15 display the aggregate Pareto frontiers identified for 

each classifier and the no classifier baseline option. Visually, 

the No Classifier option appears to outperform the other 

classifiers in terms of proximity to the true frontier. However, 

in terms of density, the naïve Bayes and Random Forest 

classifiers produce the more diverse and dense Pareto frontiers. 

 
Figure 15: Test Problem 5 Aggregate Pareto Frontiers 

Table 6 provides the metrics for comparison for the aggregate 

Pareto frontiers in Figure 15. The Decision Tree aggregate 

Pareto frontier is accomplished with a reduction in expensive 

function evaluations over 95%. However, this reduction in 

function evaluations comes at the expense of frontier extent, 

hypervolume and proximity. kNN provides a large diversity 

metric and the smallest proximity measurement, but provides 

very little in computational savings at less than 10%. 
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Table 6: Test Problem 5 Metrics for Performance Comparison 

 
Decision 

Tree 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Random 

Forest 

No 

Classifier 

Unique 

Designs 
16 143 261 31 121 

Hyper-

Volume 
126.27 167.30 203.86 249.78 127.2 

Proximity 

𝑴𝟏 
1.81 0.63 1.38 1.68 0.72 

Diversity 

𝑴𝟐 
228 12056 55458 880 7214 

Extent 

𝑴𝟑 
16.51 15.45 21.93 19.17 10.4 

Function 

Count 
429 9014 2289 756 9899 

Function 

Call 

Percent 

Reduction 

95.7% 8.9% 76.9% 92.4% -- 

To explore the average precision of each classifier for Test 

Problem 5, Figure 16 displays the average precision per 

generation. The precision values experience a large decline in 

the first few generation of the algorithm, but reach a steady state 

after approximately generation 20. Decision Tree and Random 

forest provide the highest levels of average precision with 

Decision Tree slightly outperforming Random Forest. Naïve 

Bayes continues to decline in average precision as the 

generations continue. kNN performs extremely poorly in the 

later generations with precision values of nearly zero. This 

means kNN classifies nearly every design as “good”. 

 
Figure 16: TP 5 Classifier Average Precision per Generation 

Along with the consistent average precision values for Decision 

Tree and Random Forest, the classifiers also provide excellent 

average recall values as can be seen in Figure 17. While kNN 

struggles with consistency and eventually produces recall 

values of zero, Decision Tree and Random Forest reach average 

recall values of nearly 1 meaning nearly all actually “bad” 

designs are predicted to be “bad.” 

 
Figure 17: TP 5 Classifier Average Recall per Generation 

Test Problem 6 – Non-uniformly distributed frontier 
In Test Problem 6, the ability of the algorithm to identify non-

uniformly distributed designs along the Pareto frontier and low 

solution density near the global Pareto frontier is evaluated. 

Equation (10) displays relevant equations for Test Problem 6 

where 𝑚 = 10 and 𝑥𝑖 ∈ [0,1]. The Pareto frontier is found when 
𝑔(𝑥) = 1. 

 𝑓(𝑥1) = 10 − exp (−4𝑥1) sin6(6𝜋𝑥1) 

𝑔(𝑥2, … , 𝑥𝑚) = 1 + 9 ∗ ((∑ 𝑥𝑖)/(𝑚 − 1))0.25
𝑚

𝑖=2
 

ℎ(𝑓1, 𝑔) = 1 − (
𝑓1

𝑔
)

2

 

(10) 

Figure 18 displays the aggregate Pareto frontiers for Test 

Problem 6. The algorithm struggles to identify Pareto frontiers 

and for the majority of the classifiers, the identified Pareto 

frontier consists of only a single Pareto point. As can be seen 

from the true frontier, the density of the Pareto frontier 

increases as the value for 𝐹1 increases. The implemented 

algorithms attempt to capture this behavior, but fail to identify 

any data points for values of 𝐹1 less than 1. 

 
Figure 18: Test Problem 6 Aggregate Pareto Frontiers 
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To more accurately compare the frontiers identified in Figure 

18, Table 7 displays the performance metrics for each of the 

classifiers and the No Classifier option. The only classifier to 

produce an actual frontier is Decision Tree. Therefore, a 

diversity and extent measurement can only be calculated for 

Decision Tree. In terms of function count, the naïve Bayes 

classifier produces a better data point in terms of hypervolume 

and proximity than the no classifier option in over 97% fewer 

function evaluations. 

Table 7: Test Problem 6 Metrics for Performance Comparison  

 
Decision 

Tree 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Random 

Forest 

No 

Classifier 

Unique 

Designs 
3 1 1 1 1 

Hyper-

Volume 
7.39 7.20 6.71 6.87 6.83 

Proximity 

𝑴𝟏 
5.99 6.23 5.74 5.90 5.86 

Diversity 

𝑴𝟐 
4 0 0 0 0 

Extent 

𝑴𝟑 
0.67 0 0 0 0 

Function 

Count 
2253 11534 454 4338 15404 

Function 

Call 

Percent 

Reduction 

85.4% 25.1% 
97.1

% 
71.8% -- 

To further explore the results for Test Problem 6, Figure 19 

displays the average precision for each classifier. An extreme 

reduction in average precision occurs for all classifiers in the 

early generations. However, as the generations increase, 

precision for Decision Tree, naïve Bayes and Random Forest 

levels out. kNN, on the other hand, appears sporadic in its 

average precision and produces values ranging from slightly 

more than 0.1 to nearly 1 across all the generations. 

 
Figure 19: TP 6 Average Classifier Precision per Generation 

Average recall, the percentage of actually “bad” designs that are 

predicted to be “bad”, is displayed in Figure 20. The kNN 

classifier is outperformed by all other classifiers. Decision Tree 

experiences a continual climb in average recall while Random 

Forest experiences a continual decline. Naïve Bayes, however, 

reaches nearly perfect average recall in relatively short order 

and maintains it throughout the course of the algorithm.  

 
Figure 20: TP 6 Average Classifier Recall per Generation 

DISCUSSION 
The primary goal of this work is the incorporation of a machine 

learning classifier into a MOGA to reduce the overall number 

of function calls required while still producing results 

comparable to the no classifier, baseline implementation. A 

secondary goal of the work is the exploration of the classifier 

results and recommendations associated with classifier 

selection. The following subsections independently discusses 

these objectives in more detail. 

Optimization Results 
A theme across all of the test problems evaluated is the tradeoff 

between a low proximity value and a high diversity value. That 

is, in no test problem could a “best” solution be identified. A 

sacrifice must occur whether it is solution diversity or an 

increased distance from the true frontier. When the number of 

objective function calls is added to the discussion, the classifier 

option always becomes “better” than the No Classifier option. 

However, when given the choice between two classifier 

options, the designer must choose proximity, diversity or 

objective function count when convergence is based solely on 

the number of generations processed. In the evaluated test 

problems, the computation time for each objective function is 

trivial. However, for more complex engineering problems, the 

function count reduction may prove to be the most important 

metric for classifier choice. 

The classifier options appear to perform well for Test Problems 

1 and 2. Although, visually, there appears to be a decrease in 

solution extent and diversity in Test Problem 2. 
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The discrete solution space in Test Problem 3 poses little 

difficulty for the classifier options as their proximity and 

diversity metrics are superior to the No Classifier option. 

However, it appears that the identified classifier frontiers are 

denser for smaller values of 𝐹1 and larger values of 𝐹2. This 

indicates that each classifier is robust to a discrete solution 

space, with the Decision Tree, Random Forest and Naïve Bayes 

classifiers better able to traverse the solution space. 

All classifiers and the No Classifier option struggle with the 

multimodality present in Test Problem 4. In general, the 

solutions are able to move past the local Pareto frontiers toward 

the true frontier. However, this movement is at the cost of 

solution diversity. These results support the overall conclusion 

that there is a tradeoff between proximity and diversity. 

The binary strings present in Test Problem 5 pose little 

difficulty to the classifiers and No Classifier option. This is not 

entirely surprising as the number of design combinations for 

Test Problem 5 is much smaller than that of the other test 

problems. 

Similar to the results of Test Problem 4, the results of Test 

Problem 6 indicate an inability of the algorithm to provide 

proximity and diversity. It is possible that the classifiers 

struggle with the non-uniformity of the solution space, but this 

is unlikely to be the only contributing factor as the No Classifier 

option also struggled. The low solution density near the Pareto 

frontier may also play a role. To determine the contributing 

factor, test problems to evaluate non-uniformity and low 

solution density must be developed and run independently. 

Across all six test problems, the No Classifier option performs 

poorly in terms of population diversity. This may be a result of 

the ability of the classifier to more accurately remove “bad” 

regions of the design space. It is also possible that the classifiers 

help to prevent the “rabbit-hole” behavior present by the No 

Classifier option for Test Problems 4 and 6. 

Since the No Classifier option requires more than double the 

objective function evaluations with the exception of kNN, it is 

removed from discussion as a viable solution. This holds as the 

goal of the algorithm is to reduce objective function calls Table 

8 displays the “best” choice for each test problem and metric. 

In Table 8, the classifiers that provide the lowest proximity 

value, greatest diversity value, greatest extent value and 

smallest function count on a per test problem basis are 

identified. The choice of a “winner” is done by simple majority 

rules. In this way, the choice of classifiers is down-selected to 

Decision Tree and Naïve Bayes. While these two classifiers 

may not provide the “best” values for each of the calculated 

metrics, their selection for a given problem may lead to an 

overall “better” solution than the choice of another classifier. 

Classifier Results 
Each data point in the precision and recall per generation plots 

is the average precision or recall value for a particular classifier 

and generation across all 10 runs of the algorithm. In some 

instances, the classifier did not predict any “bad” designs or no 

“bad” designs existed. In these instances, the precision and/or 

recall value is undefined. Therefore, these instances are 

removed from the data set. Table 9 shows the number of 

occurrences of an undefined precision or recall value for a given 

problem and classifier combination.  

From Table 9, kNN most frequently results in an undefined 

precision or recall value. In opposition, only for Test Problem 

5 did naïve Bayes produces any undefined precision or recall 

values. The large number of undefined precision values for 

kNN play a role in the large number of expensive function 

evaluations as the classifier is frequently classifying all designs 

as “good” and must therefore, evaluation them with the 

expensive function. 

 

Table 8: Classifier Results Comparison 

 
Test 

Problem 1 

Test 

Problem 2 

Test 

Problem 3 

Test 

Problem 4 

Test 

Problem 5 

Test 

Problem 6 
Winner 

Proximity 

𝑴𝟏 

Naïve 

Bayes 

Random 

Forest 

Naïve 

Bayes 

Random 

Forest 

k-Nearest 

Neighbor 

Naïve 

Bayes 

Naïve 

Bayes 

Diversity 

𝑴𝟐 

k-Nearest 

Neighbor 

Decision 

Tree 

k-Nearest 

Neighbor 

Decision 

Tree 

Naïve 

Bayes 

Decision 

Tree 

Decision 

Tree 

Extent 

𝑴𝟑 

Naïve 

Bayes 

Naïve 

Bayes 

Naïve 

Bayes 

Decision 

Tree 

Naïve 

Bayes 

Decision 

Tree 

Naïve 

Bayes 

Function 

Count 

Naïve 

Bayes 

Naïve 

Bayes 

Naïve 

Bayes 

Naïve 

Bayes 

Decision 

Tree 

Naïve 

Bayes 

Naïve 

Bayes 

Winner 
Naïve 

Bayes 

Naïve 

Bayes 

Naive 

Bayes 

Decision 

Tree 

Naïve 

Bayes 

Decision 

Tree/Naïve 

Bayes 
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Table 9: Undefined Precision and Recall Occurrence per 1000 

Generations 

Problem Classifier 
Undefined 

Precision 

Undefined 

Recall 

Test 

Problem 1 

Decision Tree 6 31 

k-Nearest Neighbor 306 2 

Naïve Bayes 0 0 

Random Forest 27 20 

Test 

Problem 2 

 

Decision Tree 3 1 

k-Nearest Neighbor 427 0 

Naïve Bayes 0 0 

Random Forest 8 17 

Test 

Problem 3 

Decision Tree 35 5 

k-Nearest Neighbor 499 7 

Naïve Bayes 0 0 

Random Forest 33 13 

Test 

Problem 4 

Decision Tree 48 0 

k-Nearest Neighbor 196 3 

Naïve Bayes 0 0 

Random Forest 49 0 

Test 

Problem 5 

Decision Tree 0 0 

k-Nearest Neighbor 648 553 

Naïve Bayes 62 140 

Random Forest 0 0 

Test 

Problem 6 

Decision Tree 18 3 

k-Nearest Neighbor 123 2 

Naïve Bayes 0 0 

Random Forest 7 10 

 

To better explore the classifiers and their average precision 

values, Figure 21 shows the average precision values for each 

classifier differentiated by test problem on a single plot. From 

the figure, all four classifiers produce the highest average 

precision values for Test Problem 4. Recall, Test Problem 4 is 

designed to evaluate the ability of the algorithm to handle 

multimodality. Overall, the classifiers and baseline algorithm 

produced disappointing Pareto frontiers when compared to the 

true frontier. One potential reason for the higher level of 

precision across all four classifiers may be the relatively small 

number of design variables in Test Problem 4. However, Test 

Problem 6 also has only 10 design variables and no obvious 

pattern across classifiers can be extracted. 

The average precision value for each classifier and problem 

combination experiences a reduction in average precision in the 

early generations of the algorithm. In some instances the 

average precision recovers from the initial reduction. In the 

early generations, the amount of training data is relatively small 

and there is a more equal balance between “good” and “bad” 

designs. However, as the number of generations increases, the 

training data becomes skewed and the number of “good” 

designs decreases while the number of “bad” designs increases. 

Therefore, the classifiers tend to err on the side of classifying 

designs as “bad”. One potential solution to this problem is 

alteration of the cost matrix. That is, adjusting the cost matrix 

can make the misclassification of a “good” design more 

expensive, helping alleviate the challenges associated with 

these imbalanced data sets. 

 
Figure 21: Average Precision by Classifier 
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Figure 22 displays the average recall per generation and test 

problem for each of the classifiers implemented. The kNN 

classifier consistently produces lower average recall values for 

all of the test problems than the other classifiers. This means 

kNN labeled large amounts of “bad” designs as good. As 

mentioned in previous sections, the low average recall values 

likely resulted in the large number of expensive function 

evaluations. 

With the exception of Test Problem 5, Random Forest and 

Decision Tree experience variability in their respective average 

recall values. Random Forest appears to peak in the earlier 

generations and continually declines as the algorithm 

progresses. Decision Tree has slightly more variability but does 

not have the overall downward trend apparent for Random 

Forest. Both Decision Tree and Random Forest achieve nearly 

perfect average recall for Test Problem 5 in early generations 

and maintain it until algorithm convergence. One potential 

explanation for this is the reduced design space associated with 

Test Problem 5. There are 80 binary values in a design string 

for Test Problem 5 which translates to 280 design combinations. 

However, for the other test problems there are countably 

infinite values in the range [0.1] for each of the 10 or 30 design 

variables depending on the test problem. 

Naïve Bayes boasted the most consistent average precision 

values for all test problems and behaves similarly when 

considering average recall. Unlike Decision Tree and Random 

Forest, naïve Bayes struggles with Test Problem 5. The average 

recall value reaches a maximum in the early generations and 

systematically declines as the algorithm progresses. Naïve 

Bayes assumes independence between variables and perhaps 

this assumption is not valid for Test Problem 5. 

It is also worth noting that Test Problem 4, which consistently 

had the highest average precision values, has consistently lower 

average recall values. The continual expensive evaluation of 

“bad” designs for Test Problem 4 may have contributed to the 

poor Pareto frontiers identified for Test Problem 4. As further 

evidence, the Pareto frontiers (or points) identified for Test 

Problem 6 are less than stellar and the average precision and 

recall for Test Problem 6 are relatively low with exceptions for 

kNN for precision and naïve Bayes for recall. 

 

 
Figure 22: Average Recall by Classifier 
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CONCLUSION AND FUTURE WORK 
The problems used in this work seek to test the ability of an 

algorithm to identify the Pareto frontier and maintain solution 

diversity. Overall, the algorithms failed to identify the true 

Pareto frontier but this was dictated by the termination criteria 

set at 100 generations regardless of number of function calls 

used. An increase in the number of generations before 

convergence may drastically alter the ability of the algorithms 

to identify the true Pareto frontier. 

When considered in the context of solution diversity, the No 

Classifier option performed poorly for all 6 Test Problems. 

Since the values are normalized for each Test Problem, a 

comparison cannot be made across Test Problems, but it can be 

seen from the presented results for 𝑀2 that the No Classifier 

option is always out performed by one or more classifier 

options. 

There is no single classifier that produces the greatest diversity 

measurement, 𝑀2, across all the Test Problems. Instead, each 

classifier produces the most diverse population for at least one 

Test Problem. Random Forest and Naïve Bayes each produce 

the highest diversity for two Test Problems. 

The tradeoff between the No Classifier option in terms of 

proximity to the true Pareto frontier and the classifier options in 

terms of solution diversity makes the choice of a “best” option 

difficult. The designer must choose between solution diversity 

and proximity. The inclusion of function count may aid in the 

choice of proximity or diversity. Perhaps the best choice is 

neither and instead a classifier that performs “okay” for both 

metrics and has a low function count. 

The analysis of different machine learning classifiers for 

different problem types yielded high values for precision and 

recall. As previously mentioned, the classifier is retrained each 

generation using all previously evaluated designs as training 

data. The abundance of training data as the algorithm reaches 

convergence likely aids in the ability of the classifiers to 

accurately determine “good” and “bad” designs. 

A result not specifically covered in this work, is the continued 

decrease in objective function evaluations when a classifier is 

included. In general, the number of objective function 

calculations was reduced by a considerable amount. While in 

these Test Problems the incorporation of a classifier is 

superfluous and increases computation time due to repeated 

classifier training, modern complex engineering problems 

require non-trivial functions. In these instances, the reduction 

in objective function calculations is necessary for the timely 

identification of non-dominated designs. 

A requirement of this analysis is knowledge of the Pareto 

frontier shape a priori. While this allowed for the determination 

of the most appropriate machine learning classifier of the tested 

classifiers, it does not provide a means for predicting the shape 

of a Pareto frontier. Rather, future work is needed to accurately 

predict the shape of a Pareto frontier and identify the exact 

problem characteristics that result in such a shape. This will aid 

in the selection of a machine learning classifier. 
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