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ABSTRACT 
Long-lived systems will experience many successive changes 

during their lifecycle as they are adapted to meet new system 

requirements. Existing change propagation tools predict how 

changes to a system’s design at a fixed point in its life are likely 

to spread, but have not been extended to consider a series of 

successive modifications where the change probabilities update. 

This change in propagation probabilities in response to 

successive changes is introduced as Dynamic Change 

Propagation (DCP). This paper integrates research from change 

propagation, network theory, and excess to achieve the following 

objectives: 1) describe how a DCP model predicts system 

propagation change trajectories, 2) use a new synthetic test case 

generator to correlate network parameters like degree 

distribution with DCP, and 3) determine the correlations between 

a measure of DCP and a selection of existing change propagation 

metrics. Results indicate that DCP is limited by reducing the 

number of dependencies between components (affirming the 

usefulness of adding modularity to a system) and including high 

degree component ‘hubs’ between components.  

 

1.0 INTRODUCTION 
The choice to modify a system after it has been put into 

service depends on the amount of effort required to meet new 

requirements when they arise [1]. If a system cannot be changed 

with acceptable effort, the system is used as-is (with diminished 

value) or the system is retired. One of the phenomena that makes 

changing a system challenging is the tendency for one change to 

propagate, leading to many other changes. Existing change 

propagation research has generally focused on propagation with 

respect to the initial system design. Rarely is the impact of 

successive changes considered. If each change alters the change 

propagation pathways within the system, as research into excess 

and evolvability suggests [2], then it would be beneficial to 

model alterations in change propagation. This research explores 

Dynamic Change Propagation (DCP) and quantifies its 

consequences. Predictions made by existing change propagation 

techniques are then compared to the results of the DCP analysis. 

A variety of strategies have been employed to understand 

how changes impact a system. Architecture based methods 

include the Change Propagation Method (CPM) [8], Design for 

Variety (DfV) [9], and network theory approaches [10] are some 

examples. An implicit assumption of these approaches is that the 

change propagation probabilities and connections are static. 

Changes are analyzed in relative isolation and the collective 

impact of many changes over time is not addressed. This 

assumption is reasonable for systems where context changes 

slowly relative to the in-service period (like roads, homes) or that 

are relatively inexpensive to replace (like keyboards or phones). 

It may be inappropriate for expensive systems and long-lived 

systems.  

Limitations of the static system assumption have been 

highlighted by existing work. It has been acknowledged that 

“Avalanches occur when unexpected change multipliers are 

encountered or when change margins of known multipliers are 

used up.” [11] and “Loops could be included in the analysis to 

allow the prediction of additional changes to the initiating 

systems.” [8]  The types of changes considered in this research 

are those driven by external sources. Fricke and Schulz [3] 

identified three primary categories of change drivers. These are: 

technology evolution, a dynamic environment (changes in 

customer preferences), and variety of environments (the system-

of-systems ecosphere in which the system operates). An initial 

system design is performed with a known set of technologies, 

customer preferences, and interactions with other systems 

(referred to collectively as the initial context). This context is 

built into the system’s requirements.  

As time passes the drivers identified by Fricke and Schulz 

change, altering the system’s value. This phenomenon is 

increasingly impactful because the pace of context change has 

accelerated. This has occurred in tandem with extended system 

lifecycles due to increased cost and development effort [4]. 
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Nuclear power plants with 30 year operating licenses are being 

renewed for 20 and 40 additional years of operation [5] and 

aircraft like the B-52 and C-130 have expected service periods 

of 80-100 years [6,7]. 

A poignant example of this is the design of the original F/A-

18 Hornet. As discussed in Long and Ferguson [12], the Hornet 

was designed with features like a multiplex bus [13] that were 

intended to reduce the cost of future changes. The initial design 

did not provide sufficient system resources to accommodate the 

addition of multiple systems over time. Boeing and the 

Department of Defense quickly recognized that the existing 

airframe would soon be unable to support future desired 

modifications after a comparably short operational period, 

resulting in a costly design refresh [14].  

This example demonstrates how changes made to a system 

consume excess which in turn erodes a system’s ability to be 

changed again. This is an issue that has not been sufficiently 

addressed in existing literature and can have severe 

unanticipated consequences. This research is an initial step 

towards exploring and characterizing the impact that multiple 

changes over time have on a system. It begins with the 

assumption that excess consumption increases change 

probabilities. This research then uses existing change 

propagation methods to determine what impact those modified 

probabilities have on change propagation dynamics. The result 

is a preliminary understanding of the effect of excess without 

explicitly modeling it. 

In addition, this research introduces a method found in other 

fields, but not yet used for engineering propagation research. The 

technique used for testing hypothesis in this research involves 

generating synthetic test cases using network properties found in 

real systems. Generation of synthetic cases allows researchers to 

test the impact that properties like clustering or degree-

distribution have on DCP. This allows for rapid modeling and 

characterization of these properties with goodness measures for 

correlation testing.  

 

2.0 BACKGROUND 
This research falls under the scope of engineering change 

literature. Engineering change is a broad category of research 

that examines all aspects of system and design change from need 

identification, through project management, to documentation 

and tracking. An excellent overview of the entire scope of 

engineering change literature was recently compiled by Jarratt et 

al. [16]. By focusing on a system after it has been put into 

service, this work more specifically aligns with recent efforts to 

understand changeability; though the meanings of flexibility, 

adaptability, and changeability have yet to be settled [17–20]. 

Most pertinent is the definition provided by Mak and Clarkson 

[21] where flexibility is considered to be a change made by an 

agent external to the system whose degree “may be assessed by 

the ability of the system to be changed easily.” 

Several approaches have been proposed to understand what 

design decisions and system characteristics are favorable for 

flexibility. One category is general frameworks like Beesemyer 

et al. [22] that categorized “-ilities” and how they might be 

created in a system, or Olewnik and Lewis [23] who discussed 

the application of multi-objective optimization and utility theory 

as being central to flexibility. Another category is more heuristic 

based approaches like that of Tilstra et al. [24] where a large 

collection of flexible systems were studied and 24 guidelines 

were identified to which many of the systems adhered. 

Ulrich [25] provides one of the earliest, and clearest, 

arguments for an architecture-based approach to engineering 

design. A system architecture is described as the assignment of 

functions to components, and the assignment of components to 

each other. System architectures were identified as a key to 

achieving product variety, product change, and competitive 

product performance.  

 A focus on system architecture leads to the exploration of 

system change. The following discussion highlights a small 

collection of change propagation-based research, and a broader 

review can be found in [16]. 

 Change Modes and Effects Analysis [26] is a novel take on 

the Failure Modes and Effects Analysis used to identify 

deficiencies in systems that may lead to failure. Fig. 1 shows the 

column headings of a table to be filled out on each component of 

a decomposed system. The table is populated by an expert or 

experts. It encourages discussion about how likely changes are 

to happen, what source they might come from, how difficult it 

would be to change the system, and what actions might be taken. 

The tool serves as a way to compare thoughts about flexibility, 

but lacks sufficient mathematical rigor to provide a solid 

quantitative footing [27]. 

 

 
Fig. 1 Partial CMEA table headings 

 

Design for Variety [9] uses two indices to help designers 

identify which components make good candidates for reuse 

across a family of products, and which components should be 

decoupled from the system as much as is feasible via 

modularization. The first index is the Coupling Index. The 

Coupling Index captures the strength of a connection between 

components to identify design dependencies. The second index 

is Generational Variety Index which identifies the extent to 

which engineering metrics, based on customer requirements, 

depend on specific components. Again, a numerical score is used 

to indicate the strength of the dependency. These scores are then 

compared with the various redesign costs to identify components 

for standardization (limit changes across generations) and for 

modularization (limiting the change propagation form the 

component).  

This approach does have limitations. The Coupling Index, 

for example, only considers 1 step change propagation. In real 

systems change can propagate along several design 

dependencies. This causes change to components without a 

direct connection to the initiating component. This method also 
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does not explicitly consider the impact of successive changes 

over time and how those successive changes might result in a 

more severe impact than expected. 

 This research primarily builds upon the Change Propagation 

Method (CPM) as outlined by Clarkson et al. [8]. CPM was 

developed while studying the effects of change on Westland 

Helicopters. The approach begins by modeling component 

connections. Connections are design dependencies along which 

changes can propagate. They do not necessarily need to be in 

direct physical contact.  

Direct change likelihoods (the direct probability that a 

change in one component will cause a change in another) and 

direct change impacts (the direct amount of rework required if 

change to one component necessitates a change in another) are 

then assessed for each connection by expert opinion in a similar 

manner as was done in CMEA. Each dependency is rated on a 

scale from 0 to 1 with 0 being no probability of propagation and 

1 being a certainty. The resulting is shown in Fig. 2. Where the k 

components are those initiating change and the j components are 

being changed.  

 

Once this direct likelihood matrix has been generated it is 

used to calculate a combined likelihood score. The examples and 

figures below are adapted directly from [8]. The combined 

likelihood is the probability that a change will propagate to other 

components when considering propagation beyond the direct 

interaction. To calculate this, two components are selected. The 

various pathways that exist between the two components (a and 

b in this example) are enumerated as shown in Fig. 3.  

 

 
Fig. 3 Change propagation pathway tree [8] 

 

Following pathway enumeration, the probability tree is 

evaluated from bottom to top by adding and multiplying 

propagation probabilities until a single probability is calculated 

at the top level as shown in Fig. 4. This value is the combined 

likelihood for the two components. The process is repeated for 

each cell in the matrix except diagonals and the resulting matrix 

is shown in Fig. 5. 

 

CPM resolves a limitation from GVI by allowing change to 

propagate across several components. A refinement to CPM as 

introduced by Koh et al. [28] is reachability. Reachability is the 

decay in the probability that change will propagate between 

components as a function of the number of steps away from the 

original change initiator the change gets. This captures behavior 

validated by system experts and a case study involving 

observations of real change propagation processes [29]. 

However, like GVI, it is unable to model successive changes. 

 

 
Fig. 5 Combined likelihood matrix [8] 

 

A more recent approach to system modeling leverages 

advancements in graph and network theory [30,31]. For system 

design it is more often used when modeling network resilience 

to failures [32,33]. However, there has been some crossover into 

the domain of modularity [10]. Graph and network modeling is 

useful because it provides a less subjective metric for evaluating 

system flexibility and allows for tools that have been developed 

for other domains to be used in engineering system design. 

Knowledge from existing research on system design can be used 

to generate realistic synthetic test cases. Testing these realistic 

synthetic cases will allow for a statistically significant sample to 

discern what relationships exist between network properties (like 

clustering) and change propagation. 

An additional approach to modeling change is that of excess 

and evolvability. This research [34] examines how system 

attributes could be intentionally over-designed (excess) in such 

a way as to enhance the system’s ability to be changed over time 

(evolvability). Modifications consume the available excess but 

 
Fig. 2 Direct likelihood matrix [8] 

 
Fig. 4 Pathway probability And/Or summation [8] 
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the system gains additional value from the modification. Watson 

et el. [35] demonstrated a method for optimizing the trade 

between the cost of adding evolvability and the value added by 

it on a military truck design. Most recently work from Cansler 

[36] and White [37] have started to explore how the concepts of  

excess can be applied on a component level. These 

advancements provide a stronger link to existing change 

propagation research.  

 This work continues the integration of excess and 

evolvability research with change propagation research. We 

draw on the insights from network and graph theory to generate 

test cases. These cases are then subjected to increases in change 

probability likelihoods, mimicking the consequences of excess 

consumption, so the impact the modification has on a system’s 

continued flexibility can be explored. 

 

3.0 DYNAMIC CHANGE PROPAGATION MODELING 
The goal of DCP is to measure the impact that accumulated 

changes have on a system over time. This section outlines the 

general framework for modeling DCP. A graphical overview of 

one iteration of the procedure is presented in Fig. 6.  

       We create a direct likelihood DSM in the first step. A random 

component is then selected as the change initiator for this 

iteration. A sample of dependent components modified by direct 

propagation are then identified. These components are added to 

the modified list (these are components B and E in Fig. 6). 

Change is then further propagated from B and E until no further 

change pathways are available. This is similar to the CPM 

method shown in Figs. 3 and 4. Finally, the updated probabilities 

obtained from the CPM process are used as the DSM value for 

the next iteration. After the change probabilities are updated, a 

system cascade score is calculated and stored for later analysis. 

  In more detail the four steps necessary for simulation are:  

 

1)  System Definition – Set up a system representation. DCP 

modeling adopts the existing direct likelihood matrix from CPM. 

 

Steps two, three, and four are performed iteratively until the 

simulation converges (generally when all change probabilities in 

the DSM are equal to 1). 

 

2) Propagation Simulation – This step stochastically models 

the effects of change propagation in a system. This is completed 

by randomly selecting a component as the change initiator and 

probabilistically determining the other components affected by 

the change. 

 

3)  Propagation Probability Modification – The probabilities 

of change for all design dependencies of components that are 

modified in Step 2 are increased by a predefined amount. 

 

4) Cascade Score Calculation – The metric used to score DCP 

impact is how many changes, on average, are caused by 

propagation from a single change. This is referred to as a 

“cascade score” as it measures how much a change cascades 

throughout the system. After each iteration, the cascade score is 

calculated for the new system and convergence is assessed. If the 

simulation has not converged, another iteration is completed. 

These four steps are discussed in the proceeding sections. 

 

3.1 System Definition 
This representation uses Design Structure Matrices to store 

the relationships between components. The DSM is compact, 

mature, and widely adopted in literature. An example of a direct 

 
Fig. 6 A graphical illustration of the DCP Modeling 
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likelihood matrix from CPM is shown in Fig. 2. Along the top 

are the components initiating change, along the left are 

components that are at risk of being changed in response.  Each 

entry in the matrix is the probability of that change occurring. In 

addition to the benefits of the DSM structure, placing 

probabilities in the matrix is both intuitive and convenient for 

probabilistic methods without requiring normalization.   

In CPM the probability values are generated from expert 

opinion, but other techniques have been proposed for deriving 

dependencies including: the number and strength of connections 

[9], the number and type of connections [38], or historical data 

[29].  

 

3.2 Propagation Simulation 
Once a DSM has been constructed, the second step involves 

simulating change propagation in the system. This is done by 

sampling DCP trajectories. 

The first step of sampling a DCP trajectories is selecting a 

component from which change will propagate (the change 

initiator). In this work, the change initiator is selected uniformly 

from all components. Other approaches could use knowledge 

about planned changes, as in Koh et al. [28], or predictions about 

the rate of change for constitutive components to generate a more 

representative distribution for a particular system. 

Once a change initiator is selected the components that 

depend on the change initiator are assessed to see if they too 

change. A uniform distribution is sampled for each probability in 

the change initiator column. If the results are smaller than the 

value in the cell, the component in the associated row (the j 

component from Fig. 2) is marked as changed. After each 

dependent component has been tested, all propagation 

probabilities on the DSM are multiplied by a reachability factor 

of 0.4. The reachability factor represents the diminishing 

likelihood of change to propagate through components as 

discussed in Koh et al [28]. A value of 0.4 limits the reachability 

of change propagation beyond four steps to less than 1%.   

Since multiple components may have been affected by the 

first change, this procedure is performed on each affected 

component. A simplification made in this step is that a 

component may not be marked as changed more than once. This 

assumption precludes the existence of design loops. This 

procedure repeats until there are no more components marked as 

changed. 

After the procedure is completed the change probabilities 

are modified as described in the next section. The newly 

modified network is scored using the cascade score described in 

Section 3.4. The propagation simulation is then repeated 

beginning with the selection of a new change initiator. 

 

3.3 Propagation Probability Modification 
Modifying propagation probabilities starts with a list of 

components that were changed in the last propagation 

simulation. The step at which the component was modified is 

also recorded, and the probability for change propagation is 

increased. 

 The algorithm increases change propagation probabilities 

for each affected dependent component by a fixed amount. The 

components impacted by the first propagation step are increased 

by the fixed amount times the reachability factor (0.4 by default). 

Components changed in subsequent steps are changed in a 

similar manner. This reduction is in recognition that the further 

away from change a component is, the smaller the impact is 

likely to be.  

This algorithm is a reasonable starting point for an initial 

exploration into dynamic change propagation because the small 

increase in propagation probabilities have the same results as 

larger steps but with more iterations. The extra iterations help to 

fill out cascade trajectories for full exploration. When used on 

physical systems, the step size should be calibrated to the 

specific system.   

  

3.4 Cascade Score Calculation 
Change propagation metrics in literature generally focus on 

component level measures of change. This allows designers to 

understand which components, or component interactions, 

should be targeted for improvement. However, this obfuscates 

the response of the system in its entirety. This research examines 

the system-wide impact of change and therefore requires a global 

measure. The metric derived is a cascade score because it is a 

measure of how many changes to the system would occur, on 

average, if a change is initiated (including the initiating 

component). This provides a straightforward aggregate for the 

entire system that can be tracked as change probabilities are 

modified throughout the simulation. 

The cascade score is calculated by approximating the mean 

number of changed components when the initiating components 

are drawn from a uniform probability. The same method is used 

as in Step 2, except that it is reset after each trial. The number of 

components that change in each trial is stored. This process 

continues until the mean value of the distribution is estimated 

within a specified tolerance of the sample with a 95% confidence 

interval.  

It was discovered during analysis that the cascade score can 

also be derived from the combined likelihood matrix as 

developed in Clarkson et al. [8]. In essence, the combined 

likelihood table is a conditional probability table where the 

columns are the conditional probability of the dependent 

component changing if the initiating component changes. The 

sum of the column is then the expected number of changes that 

would occur. Averaging expected changes for each column 

provides the average number of changes if a random component 

initiates change (plus one for the initiating component). 

After the cascade score is calculated, a check to determine 

if the DCP model has converged is performed. If it has 

converged, then the simulation is terminated. If convergence has 

not been achieved, the algorithm performs another iteration. 

The cascade score is tracked through the entirety of the 

simulation. This score can be used to generate sample trajectory 

plots of cascade score vs iteration, as shown in Fig. 7.  
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Fig. 7 A sample plot of changes vs. test iteration 

 

Since the model is stochastic in nature, each result varies 

depending on the order in which components are selected each 

iteration. For this reason, the average of a sample of trajectories 

is taken to smooth out fluctuations.  

To compare the averaged results from the DCP model 

against other system configurations it is necessary to devise a 

measure of overall goodness for a cascade trajectory. The 

approach taken is adapted from Smith [39]. Smith suggests the 

quantity of interest be integrated over the time period of interest 

to capture any dependency. To ensure the trajectory is scaled 

correctly for comparison the number of components should be 

normalized if the systems do not have the same number 

components. The propagation step axis should also be 

normalized to unity.  

 This provides a result in the range 0-1, where 0 is a system 

that exhibits no increase in cascade score. A 1 is a system in 

which the first change propagates to every component in the 

system. This measure is defined as the Area Under Curve (AUC). 

Calculating this metric is the final step in the DCP model.  

 

4.0 SYNTHETIC TEST SYSTEM GENERATION 
For this study, we choose to model a battery of synthetically 

generated test cases rather than testing individual systems 

represented in literature. This allows us to study how DCP is 

impacted by chosen network properties, such as degree 

distribution. This section covers the generation procedure for the 

test cases. 

Test cases generated were desired to approximate real world 

systems. Complex network research provides a framework for 

generating edges that connect components. In network 

terminology, the nodes (components) are connected by directed 

edges (design dependencies), and the degree (number of 

connections a component has) distribution is the probability 

distribution for number of edges per node. Engineered systems 

have in-edges (information flows in from another component 

and out-edges (information flows from the component to a 

different component). 

Strogatz [30] provides a thorough overview of different 

network topologies of interest in the sciences. One category of 

topology is the regular network. This type of network is 

generated with a repeating pattern of connection between nodes. 

An example would be a network in which each node is connected 

to its two closest neighbors and no others. The result is a ring.  

Of more relevance to engineering design are complex 

network architectures that incorporate some randomness. The 

simplest such network is a random network in which nodes are 

randomly connected by n number of edges. As n grows the 

network begins to coalesce from isolated clusters to become ever 

larger.  

Strogatz asserts that most real-world networks fall between 

the extremes of regular and completely random. One simple 

model generating networks in this middle ground is the small-

world network [40]. This network is created by starting with a 

regular lattice network and rewire edges with a probability of ϕ. 

With a small number of rewired edges, the graphs drastically 

reduce the average shortest path length (a property of random 

graphs) but also retains the high degree of clustering (nodes tend 

to exist in well-connected clusters). This type of graph begins to 

approximate the behavior of real-world networks like social 

groups.  

The final class of networks highlighted here are the scale-

free networks. These networks have a few nodes with very high 

degree (many connecting edges) while most have low degree. 

When plotted the degree distribution takes on the shape of a 

power law or exponential distribution. Strogatz also asserts that 

many real-world systems are well modeled by scale-free 

networks.     

 For engineered systems specifically, Sosa et al. [32] have 

examined a number of systems from a quality perspective and 

discovered that their sample was consistent with a power-law 

distribution with cut-offs (decay at the tail of the probability 

distribution). Though their research only defined degree as the 

“number of other components (within the system) the component 

connects to” it is reasonable to assume that design dependencies 

would follow similar patterns.  

 

  

With this assumption, the artificial systems were generated 

by a modified form of the preferential attachment algorithm 

adapted from Barabasi and Albert [31]. Fig. 8 shows an outline 

of the algorithm used where α is the node weight, p is a list of all 

weights, and E is the total number of edges present. It is also 

enforced that no edge can be duplicated and that no component 

may have a self-edge. 
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Fig. 8 Algorithm for network generation 
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This procedure creates a random network like the one in Fig. 

9. The parameter α can be modified to tune the degree of 

clustering desired. A low value of α results in a system where 

there are a few very high degree nodes and as α → ∞ the graph 

approaches a random graph. This allows for a variety of in and 

out degree distributions to be tested. 

The final step in generating an artificial system is selecting 

the probabilities associated with each of the edges. For these 

studies all edges were set to a fixed value of 0.1. A fixed value 

allows the results to show primarily the impact that the 

configuration of edges has without needing to make additional 

assumptions, or perform additional analysis, to account for a 

non-uniform probability distribution. The low value allows the 

entire cascade trajectory for the system to be seen. Propagation 

probabilities will theoretically transit the entire region between 

0.1 and 1 as they are increased with each change. A higher value 

would truncate the first part of the cascade trajectory and 

potentially hide interesting behavior.  

 
5.0 RESEARCH METHODOLOGY 
  The objectives for the analysis portion of the research are as 

follows: 

 

1) Describe how DCP models predict system response to 

increased change probability values.  

 

This phenomenon has only been examined qualitatively in 

literature, so questions of interest include: To what level does 

change propagation increase in a system? At what rate does the 

increase happen? What shape does the curve take? 

 

2) Test tunable parameters in the generative model to see what 

correlation exists between them and DCP.  

 

Since a goal of modularity is to reduce edges in a system, it 

is hypothesized that this should have significant correlation with 

low AUC scores. It is also hypothesized that since systems tend 

to be approximately scale free, the degree distribution, tuned by 

the αin and αout generative parameters discussed in Section 5, 

should have a significant correlation with low AUC scores. A 

wider range of α values were tested because while systems tend 

towards a scale-free degree distribution, there is likely to be a 

great deal of variation. Testing a variety of distributions is more 

inclusive of the expected variation. 

3) Test for correlation with selected existing change 

propagation metrics. 

 

It is hypothesized that AUC scores should have good 

correlation with existing metrics since the two are testing related 

system properties.   

 

To test these hypotheses a set of test cases were simulated 

with varying generative algorithm inputs. 

 The number of components was set to 25 for each 

graph. The network is large enough system for 

reasonable differentiation of degree distributions. The 

network is also small enough that many samples could 

be simulated with available computational resources. 

 The number of edges, in-degree α, and out-degree α 

were varied over a range of values shown in Table 1. 

 Each combination of levels was simulated 15 times and 

the average of those 15 was output as the result for the 

combination.  

 The number of simulations was truncated at 30 for 

simulations and 35 for initial testing. The truncation 

reduced computational effort and captured most of the 

behavior of interest. 

 

 
Table 1 Levels used for generating test systems 

 

6.0 RESULTS 
The results from this analysis reveal several insights 

regarding the impact that system architecture properties have on 

the way change propagation behaves as probabilities are 

increased. The results are broken into the three categories 

outlined in the methods section. 

 

6.1 SYSTEM RESPONSE TO DCP  
The cascade score of a system increases with propagation 

probabilities, but levels off at a value that is generally less than 

the total number of components, as shown in Fig. 10 (a random 

selection of cascade trajectories for various parameters selected 

to illustrate the shapes and terminal values of cascade 

trajectories). This is a result of the interplay between the system 

architecture and the reachability of change propagation. Even if 

all probabilities are set to one, the odds of a change propagating 

beyond four steps is very low. This highlights the importance of 

the mean degree and average distance modularity [10] for the 

system. 

 Intuitively, more edges per node, i.e. a higher average 

degree, increases the number of components a change can 

potentially reach. This relationship is influenced by how the 

architecture is arranged. Propagation can by stymied in a high 

 
Fig 9 Example network (n=10, E=35, αin=2, αout=2) 
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degree system if that system has a higher out distance 

modularity. This occurs when a sub-group of components is 

tightly clustered together, but is a larger number of edges away 

from other clusters. 

The rate of change follows an S-shaped curve. Some curves 

rise quickly and approach the maximum number of components 

while others rise much more slowly. The tuned parameters that 

are responsible for different observed behaviors are discussed in 

the following section.  

 

6.2 Influence of Tuned Parameters 
 Results of the influence of the tuned parameters on the 

cascade scores are shown in this section. The simulations that 

were run with 25 edges (with an average degree of one) increased 

so slowly that the simulation met convergence criteria well 

before other simulations. These simulations have been left in the 

charts and appear in the bottom section of each figure.  

 The number of edges has the most pronounced effect on the 

shape of cascade trajectory. Fig. 11 shows that as the number of 

edges increases, the rate of increase in the cascade trajectory is 

larger and tends towards the maximum of 25.  

 

 

The αout parameter provides a measure of the degree distribution 

for the out-degree of components. A low value results in a few 

components with most of the outward-directed edges. As αout 

increases the graph approaches a random distribution. Fig. 12 

shows that this parameter has significant influence. The clusters 

of different edge values can still be seen, but within each cluster 

αout correlates with where in the cluster the specific simulation 

falls. The higher αout, the less skewed the distribution and the 

more quickly the cascade score increases and the higher its 

maximum value. 

 

This implies that holding number of edges constant, a 

network with more outgoing connections from a single 

component, experiences less increase in the cascade score than a 

network with a more even degree distribution. 

 This is intuitively reasonable. The few components with a 

high-out degree are not likely to have more in-degree 

connections than any other component. When selecting for 

initiating components at random it is therefore less likely that the 

few nodes with many connections will be selected.    

 A notable exception to this would be the case in which a 

component or subset of components has both high out-degree 

and high in-degree. In this case any change made to the system 

is likely to travel to the high degree component and propagate 

out to its large number of dependent components. 

The final parameter, αin, was found to have less influence 

when compared to number of edges or out degree distribution. 

 
Fig. 10 A sample subset of cascade scores 

 
Fig. 11 Effect of edges on cascade scores: αin= 1, αout = [0.1-100] 

 
Fig. 12 αout effect on Cascade Scores: Edges=[25-375], αin=1 

 
Fig. 13 αin effect on Cascade Scores: Edges = [25-375], αout=1 
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When αout is low its influence dominates the position of cascade 

trajectories as seen Fig. 13. αin has no discernable pattern. 

 Only when the αout parameter is high (having little impact) 

does the effect of αin appear. A more skewed distribution for in- 

degree correlates with the property of being more resistant to 

DCP, while a more uniform assignment of in-degree increases 

DCP.  

 The correlation coefficients for the three tuned parameters 

are reported in Table 2. These and all correlations provided are 

the Pearson correlation coefficient [39]. As hypothesized, the 

number of edges has a large effect on the AUC. Less expected is  

the weaker correlation between degree distribution and AUC. 

The out-degree distribution has a small effect using the Pearson 

correlation coefficient while the in-degree is small enough to be 

classified as no discernable effect. 

 
6.3 Correlation with existing metrics 

 The third objective was to determine how well existing 

metrics correlate with dynamic change propagation. Four 

existing metrics were tested: the initial system average CPM 

score [8], a system average weighted CPI (adapted from [41]), 

and two metrics from Sosa et al. [10].  

 The initial CPM score used for this correlation is the average 

of the sum for each column in the combined likelihood matrix. 

The correlation between CPM and AUC is large with a 

coefficient of 0.96. Fig. 14 shows a scatter plot that reveals a 

distinct trend where greater scatter is seen with larger CPM 

values. The clusters of different numbers of edges can be 

distinctly observed.  

 

 
Fig. 14 CPM vs AUC with edge colors 

 

The CPI measure used for comparison is weighted by the 

weight of the edge instead of the sum of number of edges as 

derived in [29]. The CPI for each component is calculate using: 

, ,

, ,

i j i j j i i j

i

i j i j j i i j

W W
CPI

W W

 

 





 (1) 

   

where i and j are components and W is the weight of the edge of 

connecting i and j. The system score is then taken as the average 

of all components. The result is a small correlation with a 

coefficient of 0.20. Fig. 15 shows that at smaller edge numbers 

the CPI has little effect, but as the number of edges grows 

average CPI begins to correlate with AUC. 

 

 
Fig. 15 CPI vs AUC with edge colors 

 

Two metrics from Sosa et al. used for comparison are in-

distance modularity and out-distance modularity. The distance 

metrics give insight into how closely connected the system is. 

The out-distance modularity and in-distance modularity both 

have large inverse effects on the AUC with correlation 

coefficients of -0.56 and -0.63 respectively These values are 

inversely correlated because the modularity score goes up as 

distance increases.  

Fig. 16 shows the effect of out-distance modularity on AUC 

and reveals again that with a lower number of edges the score 

isn’t impactful, but as number of edges increases a higher out-

distance modularity score is correlated with a decline in AUC. 

 

 
Fig. 16 Out-Distance Modularity vs. AUC with edge colors 

 

 
Table 2 AUC vs Network Generative Parameters 
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7.0 DISCUSSION 
 There are two principle contributions to the field of 

engineering design in this research. These are: 

 

1. Using artificial network representations of systems to test 

hypotheses about the impact of network structure on 

properties important to designers. 

 

2. A comparison of existing flexibility metrics and system 

properties for predicting the evolution of change 

propagation within a system over time 

 

Regarding the first contribution, the use of generated 

networks for testing system properties holds promise for learning 

about the influence those properties have on change propagation. 

Generated networks have already been used to test network 

structure for resilience to malicious attack, to see how failures 

might propagate in a system, and for system models in many 

other fields. Change propagation knowledge has reached a 

sufficient level of maturity synthetic test cases can now be used 

to supplement existing research and provide initial hypothesis 

test before spending resources for testing on real world systems. 

The most significant finding is that keeping the number of 

edges low is the most effective way to prevent change cascades 

from worsening when the number of components is fixed. This 

finding supports existing research by affirming the value of 

modularity in minimizing connecting edges and thereby change 

propagation. A second finding is that the reachability and 

average component degree have competing effects on change 

propagation. Reachability limits how far change propagation 

travels, but a high average degree will mitigate this effect.  

Of note is the observation that network hubs appear to help 

mitigate change propagation. This is true under the assumption 

that change starts with uniform probability at any component. It 

is theorized that if more edges are connected to a single 

component then change is more likely to propagate through that 

component to reach the rest of the system. Each step reduces the 

probability of propagation, so the extra step is likely to diminish 

the impact of change on the system. This assumption is 

supported by the observation that as the out-distance modularity 

increases, the AUC decreases indicating less change in the 

system. This is likely a useful technique for limiting change 

propagation, especially if the cost of modifying the hub 

component can be kept low. 

The final finding is that existing change propagation metrics 

are correlated with improved DCP outcomes. The CPM score is 

the best correlated with outcomes, but also involves more effort 

than either CPI or network-based modularity metrics.  

 

8.0 CONCLUSION AND FUTURE WORK 
There is significant research to be completed, especially 

aimed at refining assumptions made during this preliminary 

study. Most significant would be the inclusion of cost as variable. 

This would allow for the modeling of observed change 

propagation phenomena that are dependent on the expense of a 

proposed change.  

Also important is understanding the relationship between 

component excess and change probabilities. This research 

simplified the relationship to a fixed step in change propagation 

per change made. A more sophisticated model would link the use 

of excess by a change to the modification of change probability.  

Finally, it has been observed that new change propagation 

pathways are created as system excess is consumed. For 

example, research into the F/A-18 revealed that internal system 

volume was depleted by component additions. It became 

necessary to miniaturize existing components. The miniaturized 

components were therefore altered only because of a lack of 

excess and not through any direct design dependency. Modeling 

this phenomenon could be possible with a more detailed 

accounting of system excess and would provide significant 

insight into how much excess should be included in the 

preliminary system.  

In conclusion this research has established a foundation 

upon which to reduce the cost and unexpected redesign for long-

lived systems. This is done by modeling how changing 

propagation pathways increase the number of components that 

must be modified when a change is made to the system. 

Incorporating model enhancements like component costs and 

system specific ties between change probabilities will allow 

designers to better understand how their system architecture 

impacts future lifecycle costs. 
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